27 research outputs found

    Efficient laser-driven proton acceleration from cylindrical and planar cryogenic hydrogen jets.

    Get PDF
    We report on recent experimental results deploying a continuous cryogenic hydrogen jet as a debris-free, renewable laser-driven source of pure proton beams generated at the 150 TW ultrashort pulse laser Draco. Efficient proton acceleration reaching cut-off energies of up to 20 MeV with particle numbers exceeding 109 particles per MeV per steradian is demonstrated, showing for the first time that the acceleration performance is comparable to solid foil targets with thicknesses in the micrometer range. Two different target geometries are presented and their proton beam deliverance characterized: cylindrical (∅ 5 μm) and planar (20 μm × 2 μm). In both cases typical Target Normal Sheath Acceleration emission patterns with exponential proton energy spectra are detected. Significantly higher proton numbers in laser-forward direction are observed when deploying the planar jet as compared to the cylindrical jet case. This is confirmed by two-dimensional Particle-in-Cell (2D3V PIC) simulations, which demonstrate that the planar jet proves favorable as its geometry leads to more optimized acceleration conditions

    Progress in hybrid plasma wakefield acceleration

    Get PDF
    Plasma wakefield accelerators can be driven either by intense laser pulses (LWFA) or by intense particle beams (PWFA). A third approach that combines the complementary advantages of both types of plasma wakefield accelerator has been established with increasing success over the last decade and is called hybrid LWFA→PWFA. Essentially, a compact LWFA is exploited to produce an energetic, high-current electron beam as a driver for a subsequent PWFA stage, which, in turn, is exploited for phase-constant, inherently laser-synchronized, quasi-static acceleration over extended acceleration lengths. The sum is greater than its parts: the approach not only provides a compact, cost-effective alternative to linac-driven PWFA for exploitation of PWFA and its advantages for acceleration and high-brightness beam generation, but extends the parameter range accessible for PWFA and, through the added benefit of co-location of inherently synchronized laser pulses, enables high-precision pump/probing, injection, seeding and unique experimental constellations, e.g., for beam coordination and collision experiments. We report on the accelerating progress of the approach achieved in a series of collaborative experiments and discuss future prospects and potential impact

    Summary of European Advanced Accelerator Workshop (EAAC) Working Group 1: Electron Beams from Plasma

    No full text
    International audienceWe summarize oral contributions presented in Working Group (WG) 1 of the European Advanced Accelerator Workshop (EAAC). Working Group 1 is titled ’Electron Beams from Plasma’ and included presentations and discussions on the following subjects: laser- and beam-driven plasma wakefield acceleration, recent experimental results and planned experiments, single and multi drive laser pulses (or particle bunches), external and self-injection techniques, staging as well as advanced beam control and manipulation

    LWFA PIConGPU setup for minimizing transverse phase space effects paper

    No full text
    This repository contains the PIConGPU source code and setup files used for the "Minimizing transverse phase space effects on beam-loaded laser-wakefield accelerated electron beams" paper
    corecore