11 research outputs found

    Biofunctionalization of zinc oxide nanowires for DNA sensory applications

    Get PDF
    We report on the biofunctionalization of zinc oxide nanowires for the attachment of DNA target molecules on the nanowire surface. With the organosilane glycidyloxypropyltrimethoxysilane acting as a bifunctional linker, amino-modified capture molecule oligonucleotides have been immobilized on the nanowire surface. The dye-marked DNA molecules were detected via fluorescence microscopy, and our results reveal a successful attachment of DNA capture molecules onto the nanowire surface. The electrical field effect induced by the negatively charged attached DNA molecules should be able to control the electrical properties of the nanowires and gives way to a ZnO nanowire-based biosensing device

    Advances in Organic Microcavities: Electrical Tunability and High Current Density Excitation

    Get PDF
    There is a huge demand for low-cost and compact laser devices in particular for point-of-care diagnostic, sensing, or optical communication. Organic solid-state lasers (OSLs) have a great potential to fill that gap due to their specific properties such as high optical gain, low lasing threshold, and spectral tunability. To miniaturize OSLs for micro-optical circuits two aspects are required: The spectrum of the laser should be easily tunable, and the pumping energy should be provided in a simple and compact method, in the best case electrically. In this work, we developed a simple, compact, easy to manufacture, and electrically tunable laser resonator using electroactive polymers. The cavity is formed between a highly reflecting distributed Bragg reflector (DBR) and a highly reflecting silver layer sandwiching a soft elastomer layer. A transparent electrode made by indium tin oxide is placed on the glass substrate below the DBR. If an external voltage between the transparent bottom electrode and the metal layer is applied, the elastomer layer is compressed by the electrostatic pressure, which leads to a blue shift of the optical modes of the microcavity. If an active material with a broad emission spectrum, such as organic molecules, is included inside the cavity layer, it enables the development of an electrically tunable OSL. Hence, we demonstrate a cost-effective approach towards an electrically tunable organic laser source particularly suitable for easily processable lab-on-chip devices. In the second part, a novel organic light emitting diode (OLED) architecture is realized enabling high current densities with low optical losses in the prospect of the realization of an electrically driven OSL. For this purpose, an additional highly conductive lateral transport layer (LTL) is introduced to achieve expansion of the charge recombination to the electrode-free area. Simulations by equivalent circuit approach allow for an analysis of the lateral distribution of the vertical current density to predict the lateral current density distribution in the high excitation regime (current densities ≈ 1 kA/cm² ). Moreover, the Joule heating of the device is reduced by restructuring the OLED layer stack. Thus, high current densities close to the predicted lasing threshold of 1 kA/cm² could be achieved. The results of the thesis presenting a significant step towards the development of an electrical pumped OSL.:1 Introduction 2 Theoretical Background 2.1 Optical Cavities 2.1.1 Fabry-Perot Resonator 2.1.2 Transfer Matrix Algorithm 2.1.3 Distributed Bragg Reflector 2.1.4 Optical Microcavities 2.1.5 Tunable Optical Cavities 2.2 Organic Semiconductors 2.2.1 Properties 2.2.2 Electronic Structure 2.2.3 Absorption and Emission Spectra 2.2.4 Electrical Current 2.2.5 Doping 2.3 Organic Light Emitting Diodes 2.3.1 Basic OLED 2.3.2 Pin-OLED 2.3.3 OLEDs at High Excitation 2.4 Organic Lasers 2.4.1 Fundamentals of a Laser 2.4.2 Organic Molecules as Active Medium 2.4.3 Electrical Pumping of Organic Lasers 2.5 Dielectric Elastomer Actuators 2.5.1 Principle of Operation 2.5.2 Silicone-Based Materials 2.5.3 Compliant Electrodes 3 Experimental Methods 3.1 Sample Fabrication 3.1.1 Dielectric Elastomer Actuators 3.1.2 Organic Light Emitting Diodes 3.2 Characterization Techniques 3.2.1 Optical Characterization 3.2.2 Electrical Characterization 4 Tunable Optical Cavities with Dielectric Elastomer Actuators 4.1 Design of the Tunable Optical Microcavity 4.1.1 Tunable Cavity with Thin Metal Electrode . 4.1.2 Compliant Metal Electrodes on Dielectric Elastomer Films 4.1.3 Actuator Performance of Thick Metal Electrode 4.1.4 Electro-mechanical Characteristic 4.2 Tunable Emission of Optical Elastomer Cavities 4.2.1 Incorporation of Organic Laser Dyes in the Elastomer 4.2.2 Tunable Photoluminescence Spectra 4.2.3 Lasing in Elastomer Cavities 5 Novel Architecture for OLEDs at High Excitation 5.1 OLEDs at High Excitations Using Emission from Metal-free Area 5.1.1 Simulation of the Lateral Distribution of the Vertical Current Density 5.1.2 Investigation of the Lateral Emission 5.1.3 Organic Zener Junction 5.1.4 Simulation of High Excitation Behavior 5.2 Reduction of Self-heating for OLEDs at High Excitation 5.2.1 Crossbar-OLED at High Current Densities 5.2.2 Change in Layer Structure 5.3 Fully Transparent Metal-free OLEDs 5.3.1 Highly doped C 60 as a Transparent Electrode 5.3.2 Investigation of the External Quantum Efficiency 6 Conclusion and OutlookInsbesondere durch die wachsende Nachfrage in Point-of-Care-Diagnostik, Sensorik oder optischer Kommunikationstechnologie wird eine große Anzahl von günstigen und kompakten Laserbauteilen benötigt. Aufgrund ihrer spezifischen Eigenschaften, wie hoher optische Verstärkung, niedriger Laserschwelle und spektrale Durchstimmbarkeit, sind organische Festkörperlaser geeignete Kandidaten, um diese Lücke zu schließen. Für die Anwendung als mikrooptische Systeme werden zwei wesentliche Komponenten benötigt: Die spektrale Durchstimmbarkeit sowie das Pumpen des Lasers sollten mit einem einfachen und kompakten Verfahren realisiert werden, im besten Fall durch Anlegen einer elektrischen Spannung. In der vorliegenden Arbeit wurde ein kompakter, elektrisch durchstimmbarer Laserresonator entwickelt, welcher mittels eines dielektrischen Elastomeraktuators in wenigen Prozessschritten realisiert werden kann. Der Resonator besteht aus zwei hochreflektierenden Spiegeln, einem dielektrischen Bragg-Spiegels und einem Metallspiegel, die eine Resonatorschicht aus einem weichen, verformbaren Elastomer umschließen. Für die elektrische Aktuation wird eine Spannung zwischen einer transparenten Bodenelektrode aus Indiumzinnoxid unterhalb des Bragg-Spiegel und der Metallschicht angelegt. Durch die elektrostatische Anziehung beider Elektroden wird die Elastomerschicht zusammengedrückt, wodurch die optischen Moden des Resonators eine Blauverschiebung der Wellenlänge erfahren. Durch die Integration einens Fluoreszenzfarbstoffes mit einem breiten Emissionsspektrum innerhalb der Resonatorschicht, wird die Umsetzung eines elektrisch durchstimmbaren, organischen Festkörperlasers ermöglicht. Im zweiten Teil der Arbeit wird ein neuartiges Design für organische Leuchtdioden (OLED) vorgestellt, um diese bei hohen Stromdichten zu betreiben und gleichzeitig die optischen Verluste, die beim Einbau in einen optischen Mikroresonator auftreten, zu minimieren. Hierfür wird eine zusätzliche hoch leitfähige, organische Schicht, die laterale Transportschicht, in den Schichtaufbau der OLED integriert. Aufgrund des verstärkten lateralen Ladungsträgertransports wird die Rekombinationszone bis außerhalb der Elektroden bedeckten Fläche ausgeweitet. Mithilfe einer Simulation, welche die organischen Schichten mittels eines Ersatzschaltbildes beschreibt, war es möglich, die laterale Verteilung der vertikalen Stromdichte zu bestimmen und damit Vorhersagen über die Stromdichtenverteilung bei hohen Anregungen (≈ 1 kA/cm² ) zu treffen. Darüber hinaus ermöglicht eine geänderte Schichtreihenfolge der OLED, die Joulesche Erwärmung des Bauteils zu reduzieren. Dadurch ist es möglich, hohe Stromdichten überhalb der vorherge sagten Laserschwelle von 1 kA/cm² zu erreichen. Diese Ergebnisse stellen eine wichtige Voraussetzung für die Entwicklung eines elektrisch gepumpten, organischen Festkörperlasers dar.:1 Introduction 2 Theoretical Background 2.1 Optical Cavities 2.1.1 Fabry-Perot Resonator 2.1.2 Transfer Matrix Algorithm 2.1.3 Distributed Bragg Reflector 2.1.4 Optical Microcavities 2.1.5 Tunable Optical Cavities 2.2 Organic Semiconductors 2.2.1 Properties 2.2.2 Electronic Structure 2.2.3 Absorption and Emission Spectra 2.2.4 Electrical Current 2.2.5 Doping 2.3 Organic Light Emitting Diodes 2.3.1 Basic OLED 2.3.2 Pin-OLED 2.3.3 OLEDs at High Excitation 2.4 Organic Lasers 2.4.1 Fundamentals of a Laser 2.4.2 Organic Molecules as Active Medium 2.4.3 Electrical Pumping of Organic Lasers 2.5 Dielectric Elastomer Actuators 2.5.1 Principle of Operation 2.5.2 Silicone-Based Materials 2.5.3 Compliant Electrodes 3 Experimental Methods 3.1 Sample Fabrication 3.1.1 Dielectric Elastomer Actuators 3.1.2 Organic Light Emitting Diodes 3.2 Characterization Techniques 3.2.1 Optical Characterization 3.2.2 Electrical Characterization 4 Tunable Optical Cavities with Dielectric Elastomer Actuators 4.1 Design of the Tunable Optical Microcavity 4.1.1 Tunable Cavity with Thin Metal Electrode . 4.1.2 Compliant Metal Electrodes on Dielectric Elastomer Films 4.1.3 Actuator Performance of Thick Metal Electrode 4.1.4 Electro-mechanical Characteristic 4.2 Tunable Emission of Optical Elastomer Cavities 4.2.1 Incorporation of Organic Laser Dyes in the Elastomer 4.2.2 Tunable Photoluminescence Spectra 4.2.3 Lasing in Elastomer Cavities 5 Novel Architecture for OLEDs at High Excitation 5.1 OLEDs at High Excitations Using Emission from Metal-free Area 5.1.1 Simulation of the Lateral Distribution of the Vertical Current Density 5.1.2 Investigation of the Lateral Emission 5.1.3 Organic Zener Junction 5.1.4 Simulation of High Excitation Behavior 5.2 Reduction of Self-heating for OLEDs at High Excitation 5.2.1 Crossbar-OLED at High Current Densities 5.2.2 Change in Layer Structure 5.3 Fully Transparent Metal-free OLEDs 5.3.1 Highly doped C 60 as a Transparent Electrode 5.3.2 Investigation of the External Quantum Efficiency 6 Conclusion and Outloo

    Advances in Organic Microcavities: Electrical Tunability and High Current Density Excitation

    Get PDF
    There is a huge demand for low-cost and compact laser devices in particular for point-of-care diagnostic, sensing, or optical communication. Organic solid-state lasers (OSLs) have a great potential to fill that gap due to their specific properties such as high optical gain, low lasing threshold, and spectral tunability. To miniaturize OSLs for micro-optical circuits two aspects are required: The spectrum of the laser should be easily tunable, and the pumping energy should be provided in a simple and compact method, in the best case electrically. In this work, we developed a simple, compact, easy to manufacture, and electrically tunable laser resonator using electroactive polymers. The cavity is formed between a highly reflecting distributed Bragg reflector (DBR) and a highly reflecting silver layer sandwiching a soft elastomer layer. A transparent electrode made by indium tin oxide is placed on the glass substrate below the DBR. If an external voltage between the transparent bottom electrode and the metal layer is applied, the elastomer layer is compressed by the electrostatic pressure, which leads to a blue shift of the optical modes of the microcavity. If an active material with a broad emission spectrum, such as organic molecules, is included inside the cavity layer, it enables the development of an electrically tunable OSL. Hence, we demonstrate a cost-effective approach towards an electrically tunable organic laser source particularly suitable for easily processable lab-on-chip devices. In the second part, a novel organic light emitting diode (OLED) architecture is realized enabling high current densities with low optical losses in the prospect of the realization of an electrically driven OSL. For this purpose, an additional highly conductive lateral transport layer (LTL) is introduced to achieve expansion of the charge recombination to the electrode-free area. Simulations by equivalent circuit approach allow for an analysis of the lateral distribution of the vertical current density to predict the lateral current density distribution in the high excitation regime (current densities ≈ 1 kA/cm² ). Moreover, the Joule heating of the device is reduced by restructuring the OLED layer stack. Thus, high current densities close to the predicted lasing threshold of 1 kA/cm² could be achieved. The results of the thesis presenting a significant step towards the development of an electrical pumped OSL.:1 Introduction 2 Theoretical Background 2.1 Optical Cavities 2.1.1 Fabry-Perot Resonator 2.1.2 Transfer Matrix Algorithm 2.1.3 Distributed Bragg Reflector 2.1.4 Optical Microcavities 2.1.5 Tunable Optical Cavities 2.2 Organic Semiconductors 2.2.1 Properties 2.2.2 Electronic Structure 2.2.3 Absorption and Emission Spectra 2.2.4 Electrical Current 2.2.5 Doping 2.3 Organic Light Emitting Diodes 2.3.1 Basic OLED 2.3.2 Pin-OLED 2.3.3 OLEDs at High Excitation 2.4 Organic Lasers 2.4.1 Fundamentals of a Laser 2.4.2 Organic Molecules as Active Medium 2.4.3 Electrical Pumping of Organic Lasers 2.5 Dielectric Elastomer Actuators 2.5.1 Principle of Operation 2.5.2 Silicone-Based Materials 2.5.3 Compliant Electrodes 3 Experimental Methods 3.1 Sample Fabrication 3.1.1 Dielectric Elastomer Actuators 3.1.2 Organic Light Emitting Diodes 3.2 Characterization Techniques 3.2.1 Optical Characterization 3.2.2 Electrical Characterization 4 Tunable Optical Cavities with Dielectric Elastomer Actuators 4.1 Design of the Tunable Optical Microcavity 4.1.1 Tunable Cavity with Thin Metal Electrode . 4.1.2 Compliant Metal Electrodes on Dielectric Elastomer Films 4.1.3 Actuator Performance of Thick Metal Electrode 4.1.4 Electro-mechanical Characteristic 4.2 Tunable Emission of Optical Elastomer Cavities 4.2.1 Incorporation of Organic Laser Dyes in the Elastomer 4.2.2 Tunable Photoluminescence Spectra 4.2.3 Lasing in Elastomer Cavities 5 Novel Architecture for OLEDs at High Excitation 5.1 OLEDs at High Excitations Using Emission from Metal-free Area 5.1.1 Simulation of the Lateral Distribution of the Vertical Current Density 5.1.2 Investigation of the Lateral Emission 5.1.3 Organic Zener Junction 5.1.4 Simulation of High Excitation Behavior 5.2 Reduction of Self-heating for OLEDs at High Excitation 5.2.1 Crossbar-OLED at High Current Densities 5.2.2 Change in Layer Structure 5.3 Fully Transparent Metal-free OLEDs 5.3.1 Highly doped C 60 as a Transparent Electrode 5.3.2 Investigation of the External Quantum Efficiency 6 Conclusion and OutlookInsbesondere durch die wachsende Nachfrage in Point-of-Care-Diagnostik, Sensorik oder optischer Kommunikationstechnologie wird eine große Anzahl von günstigen und kompakten Laserbauteilen benötigt. Aufgrund ihrer spezifischen Eigenschaften, wie hoher optische Verstärkung, niedriger Laserschwelle und spektrale Durchstimmbarkeit, sind organische Festkörperlaser geeignete Kandidaten, um diese Lücke zu schließen. Für die Anwendung als mikrooptische Systeme werden zwei wesentliche Komponenten benötigt: Die spektrale Durchstimmbarkeit sowie das Pumpen des Lasers sollten mit einem einfachen und kompakten Verfahren realisiert werden, im besten Fall durch Anlegen einer elektrischen Spannung. In der vorliegenden Arbeit wurde ein kompakter, elektrisch durchstimmbarer Laserresonator entwickelt, welcher mittels eines dielektrischen Elastomeraktuators in wenigen Prozessschritten realisiert werden kann. Der Resonator besteht aus zwei hochreflektierenden Spiegeln, einem dielektrischen Bragg-Spiegels und einem Metallspiegel, die eine Resonatorschicht aus einem weichen, verformbaren Elastomer umschließen. Für die elektrische Aktuation wird eine Spannung zwischen einer transparenten Bodenelektrode aus Indiumzinnoxid unterhalb des Bragg-Spiegel und der Metallschicht angelegt. Durch die elektrostatische Anziehung beider Elektroden wird die Elastomerschicht zusammengedrückt, wodurch die optischen Moden des Resonators eine Blauverschiebung der Wellenlänge erfahren. Durch die Integration einens Fluoreszenzfarbstoffes mit einem breiten Emissionsspektrum innerhalb der Resonatorschicht, wird die Umsetzung eines elektrisch durchstimmbaren, organischen Festkörperlasers ermöglicht. Im zweiten Teil der Arbeit wird ein neuartiges Design für organische Leuchtdioden (OLED) vorgestellt, um diese bei hohen Stromdichten zu betreiben und gleichzeitig die optischen Verluste, die beim Einbau in einen optischen Mikroresonator auftreten, zu minimieren. Hierfür wird eine zusätzliche hoch leitfähige, organische Schicht, die laterale Transportschicht, in den Schichtaufbau der OLED integriert. Aufgrund des verstärkten lateralen Ladungsträgertransports wird die Rekombinationszone bis außerhalb der Elektroden bedeckten Fläche ausgeweitet. Mithilfe einer Simulation, welche die organischen Schichten mittels eines Ersatzschaltbildes beschreibt, war es möglich, die laterale Verteilung der vertikalen Stromdichte zu bestimmen und damit Vorhersagen über die Stromdichtenverteilung bei hohen Anregungen (≈ 1 kA/cm² ) zu treffen. Darüber hinaus ermöglicht eine geänderte Schichtreihenfolge der OLED, die Joulesche Erwärmung des Bauteils zu reduzieren. Dadurch ist es möglich, hohe Stromdichten überhalb der vorherge sagten Laserschwelle von 1 kA/cm² zu erreichen. Diese Ergebnisse stellen eine wichtige Voraussetzung für die Entwicklung eines elektrisch gepumpten, organischen Festkörperlasers dar.:1 Introduction 2 Theoretical Background 2.1 Optical Cavities 2.1.1 Fabry-Perot Resonator 2.1.2 Transfer Matrix Algorithm 2.1.3 Distributed Bragg Reflector 2.1.4 Optical Microcavities 2.1.5 Tunable Optical Cavities 2.2 Organic Semiconductors 2.2.1 Properties 2.2.2 Electronic Structure 2.2.3 Absorption and Emission Spectra 2.2.4 Electrical Current 2.2.5 Doping 2.3 Organic Light Emitting Diodes 2.3.1 Basic OLED 2.3.2 Pin-OLED 2.3.3 OLEDs at High Excitation 2.4 Organic Lasers 2.4.1 Fundamentals of a Laser 2.4.2 Organic Molecules as Active Medium 2.4.3 Electrical Pumping of Organic Lasers 2.5 Dielectric Elastomer Actuators 2.5.1 Principle of Operation 2.5.2 Silicone-Based Materials 2.5.3 Compliant Electrodes 3 Experimental Methods 3.1 Sample Fabrication 3.1.1 Dielectric Elastomer Actuators 3.1.2 Organic Light Emitting Diodes 3.2 Characterization Techniques 3.2.1 Optical Characterization 3.2.2 Electrical Characterization 4 Tunable Optical Cavities with Dielectric Elastomer Actuators 4.1 Design of the Tunable Optical Microcavity 4.1.1 Tunable Cavity with Thin Metal Electrode . 4.1.2 Compliant Metal Electrodes on Dielectric Elastomer Films 4.1.3 Actuator Performance of Thick Metal Electrode 4.1.4 Electro-mechanical Characteristic 4.2 Tunable Emission of Optical Elastomer Cavities 4.2.1 Incorporation of Organic Laser Dyes in the Elastomer 4.2.2 Tunable Photoluminescence Spectra 4.2.3 Lasing in Elastomer Cavities 5 Novel Architecture for OLEDs at High Excitation 5.1 OLEDs at High Excitations Using Emission from Metal-free Area 5.1.1 Simulation of the Lateral Distribution of the Vertical Current Density 5.1.2 Investigation of the Lateral Emission 5.1.3 Organic Zener Junction 5.1.4 Simulation of High Excitation Behavior 5.2 Reduction of Self-heating for OLEDs at High Excitation 5.2.1 Crossbar-OLED at High Current Densities 5.2.2 Change in Layer Structure 5.3 Fully Transparent Metal-free OLEDs 5.3.1 Highly doped C 60 as a Transparent Electrode 5.3.2 Investigation of the External Quantum Efficiency 6 Conclusion and Outloo

    Advances in Organic Microcavities: Electrical Tunability and High Current Density Excitation

    No full text
    There is a huge demand for low-cost and compact laser devices in particular for point-of-care diagnostic, sensing, or optical communication. Organic solid-state lasers (OSLs) have a great potential to fill that gap due to their specific properties such as high optical gain, low lasing threshold, and spectral tunability. To miniaturize OSLs for micro-optical circuits two aspects are required: The spectrum of the laser should be easily tunable, and the pumping energy should be provided in a simple and compact method, in the best case electrically. In this work, we developed a simple, compact, easy to manufacture, and electrically tunable laser resonator using electroactive polymers. The cavity is formed between a highly reflecting distributed Bragg reflector (DBR) and a highly reflecting silver layer sandwiching a soft elastomer layer. A transparent electrode made by indium tin oxide is placed on the glass substrate below the DBR. If an external voltage between the transparent bottom electrode and the metal layer is applied, the elastomer layer is compressed by the electrostatic pressure, which leads to a blue shift of the optical modes of the microcavity. If an active material with a broad emission spectrum, such as organic molecules, is included inside the cavity layer, it enables the development of an electrically tunable OSL. Hence, we demonstrate a cost-effective approach towards an electrically tunable organic laser source particularly suitable for easily processable lab-on-chip devices. In the second part, a novel organic light emitting diode (OLED) architecture is realized enabling high current densities with low optical losses in the prospect of the realization of an electrically driven OSL. For this purpose, an additional highly conductive lateral transport layer (LTL) is introduced to achieve expansion of the charge recombination to the electrode-free area. Simulations by equivalent circuit approach allow for an analysis of the lateral distribution of the vertical current density to predict the lateral current density distribution in the high excitation regime (current densities ≈ 1 kA/cm² ). Moreover, the Joule heating of the device is reduced by restructuring the OLED layer stack. Thus, high current densities close to the predicted lasing threshold of 1 kA/cm² could be achieved. The results of the thesis presenting a significant step towards the development of an electrical pumped OSL.:1 Introduction 2 Theoretical Background 2.1 Optical Cavities 2.1.1 Fabry-Perot Resonator 2.1.2 Transfer Matrix Algorithm 2.1.3 Distributed Bragg Reflector 2.1.4 Optical Microcavities 2.1.5 Tunable Optical Cavities 2.2 Organic Semiconductors 2.2.1 Properties 2.2.2 Electronic Structure 2.2.3 Absorption and Emission Spectra 2.2.4 Electrical Current 2.2.5 Doping 2.3 Organic Light Emitting Diodes 2.3.1 Basic OLED 2.3.2 Pin-OLED 2.3.3 OLEDs at High Excitation 2.4 Organic Lasers 2.4.1 Fundamentals of a Laser 2.4.2 Organic Molecules as Active Medium 2.4.3 Electrical Pumping of Organic Lasers 2.5 Dielectric Elastomer Actuators 2.5.1 Principle of Operation 2.5.2 Silicone-Based Materials 2.5.3 Compliant Electrodes 3 Experimental Methods 3.1 Sample Fabrication 3.1.1 Dielectric Elastomer Actuators 3.1.2 Organic Light Emitting Diodes 3.2 Characterization Techniques 3.2.1 Optical Characterization 3.2.2 Electrical Characterization 4 Tunable Optical Cavities with Dielectric Elastomer Actuators 4.1 Design of the Tunable Optical Microcavity 4.1.1 Tunable Cavity with Thin Metal Electrode . 4.1.2 Compliant Metal Electrodes on Dielectric Elastomer Films 4.1.3 Actuator Performance of Thick Metal Electrode 4.1.4 Electro-mechanical Characteristic 4.2 Tunable Emission of Optical Elastomer Cavities 4.2.1 Incorporation of Organic Laser Dyes in the Elastomer 4.2.2 Tunable Photoluminescence Spectra 4.2.3 Lasing in Elastomer Cavities 5 Novel Architecture for OLEDs at High Excitation 5.1 OLEDs at High Excitations Using Emission from Metal-free Area 5.1.1 Simulation of the Lateral Distribution of the Vertical Current Density 5.1.2 Investigation of the Lateral Emission 5.1.3 Organic Zener Junction 5.1.4 Simulation of High Excitation Behavior 5.2 Reduction of Self-heating for OLEDs at High Excitation 5.2.1 Crossbar-OLED at High Current Densities 5.2.2 Change in Layer Structure 5.3 Fully Transparent Metal-free OLEDs 5.3.1 Highly doped C 60 as a Transparent Electrode 5.3.2 Investigation of the External Quantum Efficiency 6 Conclusion and OutlookInsbesondere durch die wachsende Nachfrage in Point-of-Care-Diagnostik, Sensorik oder optischer Kommunikationstechnologie wird eine große Anzahl von günstigen und kompakten Laserbauteilen benötigt. Aufgrund ihrer spezifischen Eigenschaften, wie hoher optische Verstärkung, niedriger Laserschwelle und spektrale Durchstimmbarkeit, sind organische Festkörperlaser geeignete Kandidaten, um diese Lücke zu schließen. Für die Anwendung als mikrooptische Systeme werden zwei wesentliche Komponenten benötigt: Die spektrale Durchstimmbarkeit sowie das Pumpen des Lasers sollten mit einem einfachen und kompakten Verfahren realisiert werden, im besten Fall durch Anlegen einer elektrischen Spannung. In der vorliegenden Arbeit wurde ein kompakter, elektrisch durchstimmbarer Laserresonator entwickelt, welcher mittels eines dielektrischen Elastomeraktuators in wenigen Prozessschritten realisiert werden kann. Der Resonator besteht aus zwei hochreflektierenden Spiegeln, einem dielektrischen Bragg-Spiegels und einem Metallspiegel, die eine Resonatorschicht aus einem weichen, verformbaren Elastomer umschließen. Für die elektrische Aktuation wird eine Spannung zwischen einer transparenten Bodenelektrode aus Indiumzinnoxid unterhalb des Bragg-Spiegel und der Metallschicht angelegt. Durch die elektrostatische Anziehung beider Elektroden wird die Elastomerschicht zusammengedrückt, wodurch die optischen Moden des Resonators eine Blauverschiebung der Wellenlänge erfahren. Durch die Integration einens Fluoreszenzfarbstoffes mit einem breiten Emissionsspektrum innerhalb der Resonatorschicht, wird die Umsetzung eines elektrisch durchstimmbaren, organischen Festkörperlasers ermöglicht. Im zweiten Teil der Arbeit wird ein neuartiges Design für organische Leuchtdioden (OLED) vorgestellt, um diese bei hohen Stromdichten zu betreiben und gleichzeitig die optischen Verluste, die beim Einbau in einen optischen Mikroresonator auftreten, zu minimieren. Hierfür wird eine zusätzliche hoch leitfähige, organische Schicht, die laterale Transportschicht, in den Schichtaufbau der OLED integriert. Aufgrund des verstärkten lateralen Ladungsträgertransports wird die Rekombinationszone bis außerhalb der Elektroden bedeckten Fläche ausgeweitet. Mithilfe einer Simulation, welche die organischen Schichten mittels eines Ersatzschaltbildes beschreibt, war es möglich, die laterale Verteilung der vertikalen Stromdichte zu bestimmen und damit Vorhersagen über die Stromdichtenverteilung bei hohen Anregungen (≈ 1 kA/cm² ) zu treffen. Darüber hinaus ermöglicht eine geänderte Schichtreihenfolge der OLED, die Joulesche Erwärmung des Bauteils zu reduzieren. Dadurch ist es möglich, hohe Stromdichten überhalb der vorherge sagten Laserschwelle von 1 kA/cm² zu erreichen. Diese Ergebnisse stellen eine wichtige Voraussetzung für die Entwicklung eines elektrisch gepumpten, organischen Festkörperlasers dar.:1 Introduction 2 Theoretical Background 2.1 Optical Cavities 2.1.1 Fabry-Perot Resonator 2.1.2 Transfer Matrix Algorithm 2.1.3 Distributed Bragg Reflector 2.1.4 Optical Microcavities 2.1.5 Tunable Optical Cavities 2.2 Organic Semiconductors 2.2.1 Properties 2.2.2 Electronic Structure 2.2.3 Absorption and Emission Spectra 2.2.4 Electrical Current 2.2.5 Doping 2.3 Organic Light Emitting Diodes 2.3.1 Basic OLED 2.3.2 Pin-OLED 2.3.3 OLEDs at High Excitation 2.4 Organic Lasers 2.4.1 Fundamentals of a Laser 2.4.2 Organic Molecules as Active Medium 2.4.3 Electrical Pumping of Organic Lasers 2.5 Dielectric Elastomer Actuators 2.5.1 Principle of Operation 2.5.2 Silicone-Based Materials 2.5.3 Compliant Electrodes 3 Experimental Methods 3.1 Sample Fabrication 3.1.1 Dielectric Elastomer Actuators 3.1.2 Organic Light Emitting Diodes 3.2 Characterization Techniques 3.2.1 Optical Characterization 3.2.2 Electrical Characterization 4 Tunable Optical Cavities with Dielectric Elastomer Actuators 4.1 Design of the Tunable Optical Microcavity 4.1.1 Tunable Cavity with Thin Metal Electrode . 4.1.2 Compliant Metal Electrodes on Dielectric Elastomer Films 4.1.3 Actuator Performance of Thick Metal Electrode 4.1.4 Electro-mechanical Characteristic 4.2 Tunable Emission of Optical Elastomer Cavities 4.2.1 Incorporation of Organic Laser Dyes in the Elastomer 4.2.2 Tunable Photoluminescence Spectra 4.2.3 Lasing in Elastomer Cavities 5 Novel Architecture for OLEDs at High Excitation 5.1 OLEDs at High Excitations Using Emission from Metal-free Area 5.1.1 Simulation of the Lateral Distribution of the Vertical Current Density 5.1.2 Investigation of the Lateral Emission 5.1.3 Organic Zener Junction 5.1.4 Simulation of High Excitation Behavior 5.2 Reduction of Self-heating for OLEDs at High Excitation 5.2.1 Crossbar-OLED at High Current Densities 5.2.2 Change in Layer Structure 5.3 Fully Transparent Metal-free OLEDs 5.3.1 Highly doped C 60 as a Transparent Electrode 5.3.2 Investigation of the External Quantum Efficiency 6 Conclusion and Outloo

    New concept for organic lightemitting devices under high excitations using emission from a metal-free area

    Get PDF
    In this work, a new organic light-emitting device (OLED) structure is proposed that allows light-emission from a metal-free device region, thus reducing the hurdles towards an electrically pumped organic solid state laser (OSL). Our design concept employs a stepwise change from a highly conductive but opaque metal part to a highly transparent but less conductive intrinsic emission layer. Here, the high current densities are localized to an area of a few micrometer in square, which is in the range of the mode volume of the transverse mode of an organic vertical-cavity surface-emitting laser (VCSEL). Besides these experimental results, we present findings from simulations which further support the feasibility of our design concept. Using an equivalent circuit approach, representing the current ow in the device, we calculate the time-dependent length of the emission zone and give estimations for appropriate material parameters

    Elastomer based electrically tunable, optical microcavities

    Get PDF
    Tunable optical elements are mostly realized by microelectromechanical systems, which require expensive and complex lithography during processing. We demonstrate an alternative device based on an electrically tunablemicrocavity employing a dielectric soft elastomer actuator. The cavity resonance is varied by changing the physical cavity thickness due to electrostriction of the soft elastomer. We realize a tunable metal-elastomerDBRmulti-half wavelength microcavity with a cavity layer thickness around 12 µm and quality factors up to 700. Applying a voltage up to 60 V between bottom ITO and top metal electrode tunes the wavelength of the cavity modes up to ∆λ = 14 nm, which relates to a cavity thickness change of about 200 nm. Thisconcept allows the implementation of tunable optical elements like tunable filters or resonators with low cost and simple processing.<br/

    Fano-like interference in the emission spectra of multimode organic microcavity

    No full text
    We investigate the angle-resolved emission of a multimode organic microcavity in a microscope setup with high numerical aperture. In the angle-integrated spectra, we observe the formation of narrow deep minima and maxima typical for Fano-like interference in microcavities. Our experimental angle-resolved transmission and emission spectra agree well with corresponding numerical simulations using a transfer-matrix technique, confirming the Fano-like interference of the adjacent anti-phase modes

    Electrically Tunable Dye Emission via Microcavity Integrated PDMS Gel Actuator

    No full text
    Electrically tunable microcavities are essential elements for tunable laser sources indispensable for modern telecommunication and spectroscopy. However, most device concepts suffer from extensive lithography or etching for membrane processing. Here, we present an electrically and continuously tunable, multi-half-wavelength microcavity with a quality factor > 1000 as an easy-to-fabricate platform with potential use for vertical-cavity surface-emitting lasers. The microcavity has a Fabry–Pérot structure consisting of ultrasoft PDMS gel with a thickness of 14–15 μm and capped by a distributed Bragg reflector on the bottom end and a silver layer serving as top mirror and electrode. Additionally, we have embedded a pyrromethene dye into the PDMS matrix to prove efficient gain medium integration. By means of an integrated dielectric elastomer actuator, the microcavity thickness is varied 1.3 μm (9%) with a driving voltage of 70 V. The subsequent silver mirror deflection achieves a reversible 40 nm tuning of the cavity resonance wavelength. The tuning range is limited by the lateral bending of the electrodes for increasing voltages. This characteristic bending is confirmed by simulations with finite elements method. The dynamic behavior of the microcavity is characterized by capacitance measurements and modeled by viscoelastic theory. Our research provides in-depth examinations of electrically tunable, PDMS gel-based microcavities with the future goal of building simple, miniaturized, and cost-efficient laser sources with high tuning range
    corecore