30 research outputs found

    Association of complement receptor 2 polymorphisms withinnate resistance to HIV-1 infection

    Get PDF
    HIV-1 induces activation of complement through the classical and lectin pathways. However, the virus incorporates several membrane-bound or soluble regulators of complement activation (RCA) that inactivate complement. HIV-1 can also use the complement receptors (CRs) for complement-mediated antibody-dependent enhancement of infection (Ć-ADE). We hypothesize that hypofunctional polymorphisms in RCA or CRs may protect from HIV-1 infection. For this purpose, 139 SNPs located in 19 RCA and CRs genes were genotyped in a population of 201 Spanish HIV-1-exposed seronegative individuals (HESN) and 250 HIV-1-infected patients. Two SNPs were associated with infection susceptibility, rs1567190 in CR2 (odds ratio (OR)=2.27, P=1 × 10-4) and rs2842704 in C4BPA (OR=2.11, P=2 × 10-4). To replicate this finding, we analyzed a cohort of Italian, sexually HESN individuals. Although not significant (P=0.25, OR=1.57), similar genotypic proportions were obtained for the CR2 marker rs1567190. The results of the two association analyses were combined through a random effect meta-analysis, with a significant P-value of 2.6x10-5 (OR=2.07). Furthermore, we found that the protective CR2 genotype is correlated with lower levels CR2 mRNA as well as differences in the ratio of the long and short CR2 isoforms.Genes and Immunity advance online publication, 8 January 2015; doi:10.1038/gene.2014.71.This work was supported by Spanish Health Ministry [PI021476, PI051778 and PI10/01232 to JF, JAP and ACar]; Instituto de Salud Carlos III-RETIC [RD06/006 to JAP]; Fundació Marató TV3 [020730 and 020732 to JF and ACar]; Junta de Andalucía [PI-0335/2009 to ACar]; Fundación Progreso y Salud of the Consejería de Salud de la Junta de Andalucía [AI-0021 to JAP]; and Universidad de Jaen [UJA2013/10/03 to ACar]

    UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication

    Get PDF
    The potential virucidal effects of UV-C irradiation on SARS-CoV-2 were experimentally evaluated for different illumination doses and virus concentrations (1000, 5, 0.05 MOI). At a virus density comparable to that observed in SARS-CoV-2 infection, an UV-C dose of just 3.7 mJ/cm2 was sufficient to achieve a more than 3-log inactivation without any sign of viral replication. Moreover, a complete inactivation at all viral concentrations was observed with 16.9 mJ/cm2. These results could explain the epidemiological trends of COVID-19 and are important for the development of novel sterilizing methods to contain SARS-CoV-2 infection

    MiRNA Profiling in Plasma and Placenta of SARS-CoV-2-Infected Pregnant Women

    No full text
    MicroRNAs are gene expression regulators associated with several human pathologies, including those generated by viral infections. Their role in SARS-CoV-2 infection and COVID-19 has been investigated and reviewed in many informative studies; however, a thorough miRNA outline in SARS-CoV-2-infected pregnant women (SIPW), at both systemic and placental levels, is missing. To fill this gap, blood and placenta biopsies collected at delivery from 15 asymptomatic SIPW were immediately analysed for: miRNA expression (n = 84) (QPCR array), antiviral/immune mRNA target expression (n = 74) (QGene) and cytokine/chemokines production (n = 27) (Multiplex ELISA). By comparing these results with those obtained from six uninfected pregnant women (UPW), we observed that, following SARS-CoV-2 infection, the transcriptomic profile of pregnant women is significantly altered in different anatomical districts, even in the absence of clinical symptoms and vertical transmission. This characteristic combination of miRNA and antiviral/immune factors seems to control both the infection and the dysfunctional immune reaction, thus representing a positive correlate of protection and a potential therapeutic target against SARS-CoV-2

    Immunological Profiles in Parry–Romberg Syndrome: A Case–Control Study

    No full text
    Background: Parry–Romberg syndrome (PRS) is a rare craniofacial disorder. The aim of this study is to provide information on the immunological profile of this pathology. Since PRS can be included in a wider spectrum of sclerodermic diseases, we propose a case–control study comparing a patient affected by PRS with one with a diagnosis of scleroderma, herein used as control (CTR). Methods: B lymphocyte, T lymphocyte, and monocyte phenotypes and functions were assessed by flow cytometry in influenza (Flu)- or anti cluster differentiation (CD)3/CD28-stimulated peripheral blood mononuclear cells (PBMCs). Cytokine concentration was evaluated as well in PBMC supernatants, plasma, and saliva by Luminex assay. Results: T and B lymphocytes were similarly activated in unstimulated PRS and CTR cells but differed following antigen stimulation. T helper (Th)17 lymphocytes were expanded in PRS compared to CTR; this increase correlated with higher interleukin (IL)-17 concentration. Conclusions: Our case–control study is the first to compare the immunological profiles of PRS and scleroderma patients. The higher percentage of Th17 cells in PRS suggests the use of anti-IL17 receptor monoclonal antibody in this rare disease; however, further studies with larger numbers of patients are needed to confirm our findings

    Dopamine Reduces SARS-CoV-2 Replication In Vitro through Downregulation of D2 Receptors and Upregulation of Type-I Interferons

    No full text
    Recent evidence suggests that SARS-CoV-2 hinders immune responses via dopamine (DA)-related mechanisms. Nonetheless, studies addressing the specific role of DA in the frame of SARS-CoV-2 infection are still missing. In the present study, we investigate the role of DA in SARS-CoV-2 replication along with potential links with innate immune pathways in CaLu-3 human epithelial lung cells. We document here for the first time that, besides DA synthetic pathways, SARS-CoV-2 alters the expression of D1 and D2 DA receptors (D1DR, D2DR), while DA administration reduces viral replication. Such an effect occurs at non-toxic, micromolar-range DA doses, which are known to induce receptor desensitization and downregulation. Indeed, the antiviral effects of DA were associated with a robust downregulation of D2DRs both at mRNA and protein levels, while the amount of D1DRs was not significantly affected. While halting SARS-CoV-2 replication, DA, similar to the D2DR agonist quinpirole, upregulates the expression of ISGs and Type-I IFNs, which goes along with the downregulation of various pro-inflammatory mediators. In turn, administration of Type-I IFNs, while dramatically reducing SARS-CoV-2 replication, converges in downregulating D2DRs expression. Besides configuring the CaLu-3 cell line as a suitable model to study SARS-CoV-2-induced alterations at the level of the DA system in the periphery, our findings disclose a previously unappreciated correlation between DA pathways and Type-I IFN response, which may be disrupted by SARS-CoV-2 for host cell invasion and replication

    Natural SARS-CoV-2 Infection Affects Neutralizing Activity in Saliva of Vaccinees

    No full text
    BACKGROUND: SARS-CoV-2 transmission mainly occurs through exposure of the upper airway mucosa to infected secretions such as saliva, which are excreted by an infected person. Thus, oral mucosal immunity plays a central role in the prevention of and early defense against SARS-CoV-2 infection. Although virus-specific antibody response has been extensively investigated in blood samples of SARS-CoV-2-infected patients and vaccinees, local humoral immunity in the oral cavity and its relationship to systemic antibody levels needs to be further addressed. MATERIAL AND METHODS: We fine-tuned a virus neutralization assay (vNTA) to measure the neutralizing activity (NA) of plasma and saliva samples from 20 SARS-CoV-2-infected (SI), 40 SARS-CoV-2-vaccinated (SV), and 28 SARS-CoV-2-vaccinated subjects with a history of infection (SIV) using the “wild type” SARS-CoV-2 lineage B.1 (EU) and the Delta (B.1.617.2) strains. To validate the vNTA results, the presence of neutralizing antibodies (NAbs) to the spike receptor binding domain (RBD) was evaluated with an ELISA assay. RESULTS: NA to SARS-CoV-2 lineage B.1 (EU) was present in plasma samples from all the tested subjects, with higher titers in SIV compared to both SI and SV. Conversely, NA was detected in saliva samples from 10.3% SV, 45% SI, and 92.6% SIV, with significantly lower titers in SV compared to both SI and SIV. The detection of NAbs in saliva reflected its reduced NA in SV. DISCUSSION: The difference in NA of plasma vs. saliva was confirmed in a vNTA where the SARS-CoV-2 B.1 and Delta strains were tested head-to-head, which also revealed a reduced NA of both specimens compared to the B.1 variant. CONCLUSIONS: The administration of SARS-CoV-2 vaccines was associated with limited virus NA in the oral cavity, as measured in saliva and in comparison to plasma. This difference was more evident in vaccinees without a history of SARS-CoV-2 infection, possibly highlighting the importance of local exposure at the site of virus acquisition to effectively prevent the infection and block its spread. Nevertheless, the presence of immune escape mutations as possibly represented by the SARS-CoV-2 Delta variant negatively affects both local and systemic efficacy of NA associated with vaccination

    Precursor forms of vitamin D reduce HIV-1 infection in vitro

    No full text
    Artículo CientíficoBackground: Although the anti-HIV-1 effects of vitamin D (VitD) have been reported, mechanisms behind such protection remain largely unexplored. Methods: The effects of two precursor forms (cholecalciferol/calciol at 0.01, 1 and 100 nM and calcidiol at 100 and 250 nM) on HIV-1 infection, immune activation, and gene expression were analyzed in vitro in cells of Colombian and Italian healthy donors. We quantified levels of released p24 by enzyme-linked immunosorbent assay, of intracellular p24 and cell-surface expression of CD38 and HLA-DR by flow cytometry, and mRNA expression of antiviral and immunoregulatory genes by real-time reverse transcriptionpolymerase chain reaction. Results: Cholecalciferol decreased the frequency of HIV-1-infected p24+CD4+ T cells and levels of p24 in supernatants in a dosedependent manner. Moreover, the CD4+CD38+HLA-DR+ and CD4+CD382HLA-DR+ subpopulations were more susceptible to infection but displayed the greatest cholecalciferol-induced decreases in infection rate by an X4-tropic strain. Likewise, cholecalciferol at its highest concentration decreased the frequency of CD382HLA-DR+ but not of CD38+HLA-DR+ T-cell subsets. Analyzing the effects of calcidiol, the main VitD source for immune cells and an R5-tropic strain as the most frequently transmitted virus, a reduction in HIV-1 productive infection was also observed. In addition, an increase in mRNA expression of APOBEC3G and PI3 and a reduction of TRIM22 and CCR5 expression, this latter positively correlated with p24 levels, was noted. Conclusions: VitD reduces HIV-1 infection in T cells possibly by inducing antiviral gene expression, reducing the viral co-receptor CCR5 and, at least at the highest holecalciferol concentration, by promoting an HIV-1-restrictive CD38+HLA-DR2 [email protected]

    Salivary miRNA Profiles in COVID-19 Patients with Different Disease Severities

    No full text
    : The oral mucosa is the first site of SARS-CoV-2 entry and replication, and it plays a central role in the early defense against infection. Thus, the SARS-CoV-2 viral load, miRNAs, cytokines, and neutralizing activity (NA) were assessed in saliva and plasma from mild (MD) and severe (SD) COVID-19 patients. Here we showed that of the 84 miRNAs analyzed, 8 were differently expressed in the plasma and saliva of SD patients. In particular: (1) miRNAs let-7a-5p, let-7b-5p, and let-7c-5p were significantly downregulated; and (2) miR-23a and b and miR-29c, as well as three immunomodulatory miRNAs (miR-34a-5p, miR-181d-5p, and miR-146) were significantly upregulated. The production of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, IL-9, and TNFα) and chemokines (CCL2 and RANTES) increased in both the saliva and plasma of SD and MD patients. Notably, disease severity correlated with NA and immune activation. Monitoring these parameters could help predict disease outcomes and identify new markers of disease progression

    Stimulation of PBMC and Monocyte-derived-Macrophages via Toll-Like Receptor (TLRs) Activates Innate Immune Pathways in HIV-Infected Patients on Virally-Suppressive Combination Antiretroviral Therapy (cART)

    Get PDF
    In HIV-infected cART-treated patients, immune activation and microbial translocation persist and associate with inadequate CD4 recovery and morbidity/mortality. We analyzed whether alterations in the TLR pathway could be responsible for the immune hyper-activation seen in these patients.PBMC/MDM of 28 HIV+ untreated and 35 cART treated patients with HIV-RNA<40cp/mL (20 Full Responders: CD4≥350; 15 Immunological Non Responders:CD4<350) as well as of 16 healthy controls were stimulated with a panel of TLR agonists. We measured: CD4/CD8/CD14/CD38/HLA-DR/Ki67/AnnexV/CD69/TLR4/8 (Flow Cytometry); PBMC expression of 84 TLR pathway genes (qPCR); PBMC/MDM cytokine release (Multiplex); plasma LPS/sCD14 (LAL/ELISA). PBMC/MDM from cART patients responded weakly to LPS stimulation but released high amounts of pro-inflammatory cytokines. MDM from these patients were characterized by a reduced expression of HLA-DR+MDM and failed to expand activated HLA-DR+CD38+ T-lymphocytes. PBMC/MDM from cART patients responded more robustly to ssRNA stimulation; this resulted in a significant expansion of activated CD38+CD8 and the release of amounts of pro-inflammatory cytokines comparable to those seen in untreated viremic patients. Despite greater constitutive TLR pathway gene expression, PBMC from Immunological Non Responders seemed to up-regulate only type I IFN genes following TLR stimulation, whereas PBMC from Full Responders showed a broader response. Systemic exposure to microbial antigens drives immune activation during cART by triggering TLRs. Bacterial stimulation modifies MDM function/pro-inflammatory profile in cART patients without affecting T-lymphocytes; this suggests translocating bacteria as selective stimulus to chronic innate activation during cART. High constitutive TLR activation is seen in patients lacking CD4 recovery, suggesting an exhausted immune milieu, anergic to further antigen encounters
    corecore