134 research outputs found

    Metaphor in Sign Languages

    Get PDF
    Metaphor abounds in both sign and spoken languages. However, in sign languages, languages in the visual-manual modality, metaphors work a bit differently than they do in spoken languages. In this paper we explore some of the ways in which metaphors in sign languages differ from metaphors in spoken languages. We address three differences: (a) Some metaphors are very common in spoken languages yet are infelicitous in sign languages; (b) Body-part terms are possible in very specific types of metaphors in sign languages, but are not so restricted in spoken languages; (c) Similes in some sign languages are dispreferred in predicative positions in which metaphors are fine, in contrast to spoken languages where both can appear in these environments. We argue that these differences can be explained by two seemingly unrelated principles: the Double Mapping Constraint (Meir, 2010), which accounts for the interaction between metaphor and iconicity in languages, and Croft’s (2003) constraint regarding the autonomy and dependency of elements in metaphorical constructions. We further argue that the study of metaphor in the signed modality offers novel insights concerning the nature of metaphor in general, and the role of figurative speech in language

    PAR Genes: Molecular Probes to Pathological Assessment in Breast Cancer Progression

    Get PDF
    Taking the issue of tumor categorization a step forward and establish molecular imprints to accompany histopathological assessment is a challenging task. This is important since often patients with similar clinical and pathological tumors may respond differently to a given treatment. Protease-activated receptor-1 (PAR1), a G protein-coupled receptor (GPCR), is the first member of the mammalian PAR family consisting of four genes. PAR1 and PAR2 play a central role in breast cancer. The release of N-terminal peptides during activation and the exposure of a cryptic internal ligand in PARs, endow these receptors with the opportunity to serve as a “mirror-image” index reflecting the level of cell surface PAR1&2-in body fluids. It is possible to use the levels of PAR-released peptide in patients and accordingly determine the choice of treatment. We have both identified PAR1 C-tail as a scaffold site for the immobilization of signaling partners, and the critical minimal binding site. This binding region may be used for future therapeutic modalities in breast cancer, since abrogation of the binding inhibits PAR1 induced breast cancer. Altogether, both PAR1 and PAR2 may serve as molecular probes for breast cancer diagnosis and valuable targets for therapy

    Regulation of human protease-activated receptor 1 (hPar1) gene expression in breast cancer by estrogen

    Get PDF
    A pivotal role is attributed to the estrogenreceptor (ER) pathway in mediating the effect of estrogen in breast cancer progression. Yet the precise mechanisms of cancer development by estrogen remain poorly understood. Advancing tumor categorization a step forward, and identifying cellular gene fingerprints to accompany histopathological assessment may provide targets for therapy as well as vehicles for evaluating the response to treatment. We report here that in breast carcinoma, estrogen may induce tumor development by eliciting protease-activated receptor-1 (PAR1) gene expression. Induction of PAR1 was shown by electrophoretic mobility shift assay, luciferase reporter gene driven by the hPar1 promoter, and chromatin-immunoprecipitation analyses. Functional estrogen regulation of hPar1 in breast cancer was demonstrated by an endothelial tube-forming network. Notably, tissue-microarray analyses from an established cohort of women diagnosed with invasive breast carcinoma exhibited a significantly shorter disease-free (P 0.006) and overall (P 0.02) survival of patients that were positive for ER and PAR1, compared to ER-positive but PAR1-negative patients. We propose that estrogen transcriptionally regulates hPar1, culminating in an aggressive gene imprint in breast cancer. While ER patients are traditionally treated with hormone therapy, the presence of PAR1 identifies a group of patients that requires additional treatment, such as anti-PAR1 biological vehicles or chemotherapy.—Salah, Z., Uziely, B., Jaber, M., Maoz, M., Cohen, I., Hamburger, T., Maly, B., Peretz, T., B.-S, R. Regulation of human protease-activated receptor 1 (hPar1) gene expression in breast cancer by estrogen

    Development and manufacture of novel locally produced anti-BCMA CAR T cells for the treatment of relapsed/refractory multiple myeloma: results from a phase I clinical trial

    Get PDF
    Anti-B-cell maturation antigen (BCMA) chimeric antigen receptor T-cell (CAR T) therapy shows remarkable efficacy in patients with relapsed and/or refractory (R/R) multiple myeloma (MM). HBI0101, a novel second generation optimized anti- BCMA CAR T-cell therapy, was developed in an academic setting. We conducted a phase I dose-escalation study of HBI0101 (cohort 1: 150x106 CAR T cells, n=6; cohort 2: 450x106 CAR T cells, n=7; cohort 3: 800x106 CAR T cells, n=7) in 20 heavily pre-treated R/R MM patients. Grade 1-2 cytokine release syndrome (CRS) was reported in 18 patients (90%). Neither grade 3-4 CRS nor neurotoxicity of any grade were observed. No dose-limiting toxicities were observed in any cohort. The overall response rate (ORR), (stringent) complete response (CR/sCR), and very good partial response rates were 75%, 50%, and 25%, respectively. Response rates were dose-dependent with 85% ORR, 71% CR, and 57% minimal residual disease negativity in the high-dose cohort 3. Across all cohorts, the median overall survival (OS) was 308 days (range 25-466+), with an estimated OS of 55% as of June 27th (data cut-off). The median progression-free survival was 160 days, with 6 subjects remaining progression free at the time of data cut-off. Our findings demonstrate the manageable safety profile and efficacy of HBI0101. These encouraging data support the decentralization of CAR T production in an academic setting, ensuring sufficient CAR T supply to satisfy the increasing local demand. Clinicaltrials.gov NCT04720313

    Outcome of Second Primary Malignancies Developing in Multiple Myeloma Patients

    Get PDF
    Background: There is an increased risk of second primary malignancies (SMPs) in patients with multiple myeloma (MM). This multinational 'real-world' retrospective study analyzed the characteristics and outcomes of MM patients that developed SPMs.Results: 165 patients were analyzed: 62.4% males; 8.5% with a prior cancer; 113 with solid SPMs, mainly =stage 2; and 52 with hematological SPM (hemato-SPM), mainly MDS/AML. Patients with hemato-SPM were younger (p = 0.05) and more frequently had a prior AutoHCT (p = 0.012). The time to SPM was shorter in the older (>65 years) and more heavily pretreated patients. One hundred patients were actively treated at the time of SPM detection. Treatment was discontinued in 52, substituted with another anti-MM therapy in 15, and continued in 33 patients. Treatment discontinuation was predominant in the patients diagnosed with hemato-SPM (76%). The median OS following SPM detection was 8.5 months, and the main cause of death was SPM. A poor ECOG status predicted a shorter OS (PS 3 vs. 0, HR = 5.74, 2.32-14.21, p < 0.001), whereas a normal hemoglobin level (HR = 0.43, 0.19-0.95, p = 0.037) predicted longer OS.Conclusions: With the continuing improvement in OS, a higher proportion of MM patients might develop SPM. The OS following SPM diagnosis is poor; hence, frequent surveillance and early detection are imperative to improve outcomes

    GNE Is Involved in the Early Development of Skeletal and Cardiac Muscle

    Get PDF
    UDP-N-acetylglucosamine 2 epimerase/N-acetylmannosamime kinase (GNE) is a bifunctional enzyme which catalyzes the two key sequential steps in the biosynthetic pathway of sialic acid, the most abundant terminal monosaccharide on glycoconjugates of eukaryotic cells. GNE knock out (GNE KO) mice are embryonically lethal at day E8.5. Although the role of GNE in the sialic pathway has been well established as well as the importance of sialylation in many diverse biological pathways, less is known about the involvement of GNE in muscle development. To address this issue we have studied the role of GNE during in vitro embryogenesis by comparing the developmental profile in culture of embryonic stem cells (ES) from wild type and from GNE KO E3.5 mice embryos, during 45 days. Neuronal cells appeared rarely in GNE KO ES cultures and did not reach an advanced differentiated stage. Although primary cardiac cells appeared at the same time in both normal and GNE KO ES cultures, GNE KO cardiac cells degraded very soon and their beating capacity decayed rapidly. Furthermore very rare skeletal muscle committed cells were detected in the GNE KO ES cultures at any stage of differentiation, as assessed by analysis of the expression of either Pax7, MyoD and MyHC markers. Beyond the supporting evidence that GNE plays an important role in neuronal cell and brain development, these results show that GNE is strongly involved in cardiac tissue and skeletal muscle early survival and organization. These findings could open new avenues in the understanding of muscle function mechanisms in health and in disease

    Direct Visualization of Protease Action on Collagen Triple Helical Structure

    Get PDF
    Enzymatic processing of extracellular matrix (ECM) macromolecules by matrix metalloproteases (MMPs) is crucial in mediating physiological and pathological cell processes. However, the molecular mechanisms leading to effective physiological enzyme-ECM interactions remain elusive. Only scant information is available on the mode by which matrix proteases degrade ECM substrates. An example is the enzymatic degradation of triple helical collagen II fragments, generated by the collagenase MMP-8 cleavage, during the course of acute inflammatory conditions by gelatinase B/MMP-9. As is the case for many other matrix proteases, it is not clear how MMP-9 recognizes, binds and digests collagen in this important physiological process. We used single molecule imaging to directly visualize this protease during its interaction with collagen fragments. We show that the initial binding is mediated by the diffusion of the protease along the ordered helix on the collagen ¾ fragment, with preferential binding of the collagen tail. As the reaction progressed and prior to collagen degradation, gelatin-like morphologies resulting from the denaturation of the triple helical collagen were observed. Remarkably, this activity was independent of enzyme proteolysis and was accompanied by significant conformational changes of the working protease. Here we provide the first direct visualization of highly complex mechanisms of macromolecular interactions governing the enzymatic processing of ECM substrates by physiological protease

    Etk/Bmx Regulates Proteinase-Activated-Receptor1 (PAR1) in Breast Cancer Invasion: Signaling Partners, Hierarchy and Physiological Significance

    Get PDF
    BACKGROUND: While protease-activated-receptor 1 (PAR(1)) plays a central role in tumor progression, little is known about the cell signaling involved. METHODOLOGY/PRINCIPAL FINDINGS: We show here the impact of PAR(1) cellular activities using both an orthotopic mouse mammary xenograft and a colorectal-liver metastasis model in vivo, with biochemical analyses in vitro. Large and highly vascularized tumors were generated by cells over-expressing wt hPar1, Y397Z hPar1, with persistent signaling, or Y381A hPar1 mutant constructs. In contrast, cells over-expressing the truncated form of hPar1, which lacks the cytoplasmic tail, developed small or no tumors, similar to cells expressing empty vector or control untreated cells. Antibody array membranes revealed essential hPar1 partners including Etk/Bmx and Shc. PAR(1) activation induces Etk/Bmx and Shc binding to the receptor C-tail to form a complex. Y/A mutations in the PAR(1) C-tail did not prevent Shc-PAR(1) association, but enhanced the number of liver metastases compared with the already increased metastases obtained with wt hPar1. We found that Etk/Bmx first binds via the PH domain to a region of seven residues, located between C378-S384 in PAR(1) C-tail, enabling subsequent Shc association. Importantly, expression of the hPar1-7A mutant form (substituted A, residues 378-384), which is incapable of binding Etk/Bmx, resulted in inhibition of invasion through Matrigel-coated membranes. Similarly, knocking down Etk/Bmx inhibited PAR(1)-induced MDA-MB-435 cell migration. In addition, intact spheroid morphogenesis of MCF10A cells is markedly disrupted by the ectopic expression of wt hPar1. In contrast, the forced expression of the hPar1-7A mutant results in normal ball-shaped spheroids. Thus, by preventing binding of Etk/Bmx to PAR(1) -C-tail, hPar1 oncogenic properties are abrogated. CONCLUSIONS/SIGNIFICANCE: This is the first demonstration that a cytoplasmic portion of the PAR(1) C-tail functions as a scaffold site. We identify here essential signaling partners, determine the hierarchy of binding and provide a platform for therapeutic vehicles via definition of the critical PAR(1)-associating region in the breast cancer signaling niche

    Enhanced production yields of rVSV-SARS-CoV-2 vaccine using Fibra-Cel® macrocarriers

    Get PDF
    The COVID-19 pandemic has led to high global demand for vaccines to safeguard public health. To that end, our institute has developed a recombinant viral vector vaccine utilizing a modified vesicular stomatitis virus (VSV) construct, wherein the G protein of VSV is replaced with the spike protein of SARS-CoV-2 (rVSV-ΔG-spike). Previous studies have demonstrated the production of a VSV-based vaccine in Vero cells adsorbed on Cytodex 1 microcarriers or in suspension. However, the titers were limited by both the carrier surface area and shear forces. Here, we describe the development of a bioprocess for rVSV-ΔG-spike production in serum-free Vero cells using porous Fibra-Cel® macrocarriers in fixed-bed BioBLU®320 5p bioreactors, leading to high-end titers. We identified core factors that significantly improved virus production, such as the kinetics of virus production, the use of macrospargers for oxygen supply, and medium replenishment. Implementing these parameters, among others, in a series of GMP production processes improved the titer yields by at least two orders of magnitude (2e9 PFU/mL) over previously reported values. The developed process was highly effective, repeatable, and robust, creating potent and genetically stable vaccine viruses and introducing new opportunities for application in other viral vaccine platforms
    corecore