4 research outputs found

    A combination of molecular cytogenetic analyses reveals complex genetic alterations in conventional renal cell carcinoma

    No full text
    Here we report the complex pattern of genomic imbalances and rearrangements in a panel of 19 renal cell carcinoma cell lines detected with molecular cytogenetic analysis. Consistent heterogeneity in chromosome number was found, and most cell lines showed a near-triploid chromosome complement. Several cell lines showed deletions of the TP53 (alias p53), CDKN2A (alias p16), and VHL genes. Multiplex fluorescence in situ hybridization (M-FISH) analysis revealed chromosome 3 translocated to several other partners chromosomes, as well as breakage events commonly affecting chromosomes 1, 5, 8, 10, and 17. The most common abnormality detected with comparative genomic hybridization (CGH) was deletions of chromosome 3p, with loss of the RASSF1, FHIT, and p44S10 loci frequently involved. CGH gain of 5q showed overrepresentation of the EGR1 and CSF1R genes. Recurrent alterations to chromosome 7 included rearrangement of 7q11 and gains of the EGFR, TIF1, and RFC2 genes. Several lines exhibited rearrangement of 12q11q14 and overrepresentation of CDK4 and SAS loci. M-FISH revealed several other recurrent translocations, and CGH findings included loss of 9p, 14q, and 18q and gain of 8q, 12, and 20. Further genomic microarray changes included loss of MTAP, IGH@, HTR1B, and SMAD4 (previously MADH4) and gains of MYC and TOP1. An excellent correlation was observed between the genomic array and FISH data, demonstrating that this technique is effective and accurate. The aberrations detected here may reflect important pathways in renal cancer pathogenesis

    Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study

    No full text
    Translocations involving chromosome 11q23 frequently occur in pediatric acute myeloid leukemia (AML) and are associated with poor prognosis. In most cases, the MLL gene is involved, and more than 50 translocation partners have been described. Clinical outcome data of the 11q23-rearranged subgroups are scarce because most 11q23 series are too small for meaningful analysis of subgroups, although some studies suggest that patients with t(9;11)(p22;q23) have a more favorable prognosis. We retrospectively collected outcome data of 756 children with 11q23- or MLL-rearranged AML from 11 collaborative groups to identify differences in outcome based on translocation partners. All karyotypes were centrally reviewed before assigning patients to subgroups. The event-free survival of 11q23/MLL-rearranged pediatric AML at 5 years from diagnosis was 44% (± 5%), with large differences across subgroups (11% ± 5% to 92% ± 5%). Multivariate analysis identified the following subgroups as independent prognostic predictors: t(1;11)(q21;q23) (hazard ratio [HR] = 0.1, P = .004); t(6;11)(q27;q23) (HR = 2.2, P < .001); t(10;11)(p12;q23) (HR = 1.5, P = .005); and t(10;11)(p11.2;q23) (HR = 2.5, P = .005). We could not confirm the favorable prognosis of the t(9;11)(p22;q23) subgroup. We identified large differences in outcome within 11q23/MLL-rearranged pediatric AML and novel subgroups based on translocation partners that independently predict clinical outcome. Screening for these translocation partners is needed for accurate treatment stratification at diagnosis

    Prognostic significance of additional cytogenetic aberrations in 733 de novo pediatric 11q23/MLL-rearranged AML patients: results of an international study

    No full text
    We previously demonstrated that outcome of pediatric 11q23/MLL-rearranged AML depends on the translocation partner (TP). In this multicenter international study on 733 children with 11q23/MLL-rearranged AML, we further analyzed which additional cytogenetic aberrations (ACA) had prognostic significance. ACAs occurred in 344 (47%) of 733 and were associated with unfavorable outcome (5-year overall survival [OS] 47% vs 62%, P < .001). Trisomy 8, the most frequent specific ACA (n = 130/344, 38%), independently predicted favorable outcome within the ACAs group (OS 61% vs 39%, P = .003; Cox model for OS hazard ratio (HR) 0.54, P = .03), on the basis of reduced relapse rate (26% vs 49%, P < .001). Trisomy 19 (n = 37/344, 11%) independently predicted poor prognosis in ACAs cases, which was partly caused by refractory disease (remission rate 74% vs 89%, P = .04; OS 24% vs 50%, P < .001; HR 1.77, P = .01). Structural ACAs had independent adverse prognostic value for event-free survival (HR 1.36, P = .01). Complex karyotype, defined as ≥ 3 abnormalities, was present in 26% (n = 192/733) and showed worse outcome than those without complex karyotype (OS 45% vs 59%, P = .003) in univariate analysis only. In conclusion, like TP, specific ACAs have independent prognostic significance in pediatric 11q23/MLL-rearranged AML, and the mechanism underlying these prognostic differences should be studied
    corecore