200 research outputs found

    How closely do changes in surface and column water vapor follow Clausius-Clapeyron scaling in climate change simulations?

    Get PDF
    The factors governing the rate of change in the amount of atmospheric water vapor are analyzed in simulations of climate change. The global-mean amount of water vapor is estimated to increase at a differential rate of 7.3% K[superscript − 1] with respect to global-mean surface air temperature in the multi-model mean. Larger rates of change result if the fractional change is evaluated over a finite change in temperature (e.g., 8.2% K [superscript − 1] for a 3 K warming), and rates of change of zonal-mean column water vapor range from 6 to 12% K [superscript − 1] depending on latitude. Clausius–Clapeyron scaling is directly evaluated using an invariant distribution of monthly-mean relative humidity, giving a rate of 7.4% K − 1 for global-mean water vapor. There are deviations from Clausius–Clapeyron scaling of zonal-mean column water vapor in the tropics and mid-latitudes, but they largely cancel in the global mean. A purely thermodynamic scaling based on a saturated troposphere gives a higher global rate of 7.9% K [superscript − 1]. Surface specific humidity increases at a rate of 5.7% K [superscript − 1], considerably lower than the rate for global-mean water vapor. Surface specific humidity closely follows Clausius–Clapeyron scaling over ocean. But there are widespread decreases in surface relative humidity over land (by more than 1% K − 1 in many regions), and it is argued that decreases of this magnitude could result from the land/ocean contrast in surface warming

    Contribution of Cytochrome P450 and ABCB1 Genetic Variability on Methadone Pharmacokinetics, Dose Requirements, and Response

    Get PDF
    Although the efficacy of methadone maintenance treatment (MMT) in opioid dependence disorder has been well established, the influence of methadone pharmacokinetics in dose requirement and clinical outcome remains controversial. The aim of this study is to analyze methadone dosage in responder and nonresponder patients considering pharmacogenetic and pharmacokinetic factors that may contribute to dosage adequacy. Opioid dependence patients (meeting Diagnostic and Statistical Manual of Mental Disorders, [4th Edition] criteria) from a MMT community program were recruited. Patients were clinically assessed and blood samples were obtained to determine plasma concentrations of (R,S)-, (R) and (S)- methadone and to study allelic variants of genes encoding CYP3A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, and P-glycoprotein. Responders and nonresponders were defined by illicit opioid consumption detected in random urinalysis. The final sample consisted in 105 opioid dependent patients of Caucasian origin. Responder patients received higher doses of methadone and have been included into treatment for a longer period. No differences were found in terms of genotype frequencies between groups. Only CYP2D6 metabolizing phenotype differences were found in outcome status, methadone dose requirements, and plasma concentrations, being higher in the ultrarapid metabolizers. No other differences were found between phenotype and responder status, methadone dose requirements, neither in methadone plasma concentrations. Pharmacokinetic factors could explain some but not all differences in MMT outcome and methadone dose requirements
    • …
    corecore