17 research outputs found

    Physical and Antibacterial Properties of Peppermint Essential Oil Loaded Poly (ε-caprolactone) (PCL) Electrospun Fiber Mats for Wound Healing

    Get PDF
    The aim of this study was to fabricate and characterize various concentrations of peppermint essential oil (PEP) loaded on poly(ε-caprolactone) (PCL) electrospun fiber mats for healing applications, where PEP was intended to impart antibacterial activity to the fibers. SEM images illustrated that the morphology of all electrospun fiber mats was smooth, uniform, and bead-free. The average fiber diameter was reduced by the addition of PEP from 1.6 ± 0.1 to 1.0 ± 0.2 μm. Functional groups of the fibers were determined by Raman spectroscopy. Gas chromatography-mass spectroscopy (GC-MS) analysis demonstrated the actual PEP content in the samples. In vitro degradation was determined by measuring weight loss and their morphology change, showing that the electrospun fibers slightly degraded by the addition of PEP. The wettability of PCL and PEP loaded electrospun fiber mats was measured by determining contact angle and it was shown that wettability increased with the incorporation of PEP. The antimicrobial activity results revealed that PEP loaded PCL electrospun fiber mats exhibited inhibition against Staphylococcus aureus (gram-positive) and Escherichia coli (gram-negative) bacteria. In addition, an in-vitro cell viability assay using normal human dermal fibroblast (NHDF) cells revealed improved cell viability on PCL, PCLPEP1.5, PCLPEP3, and PCLGEL6 electrospun fiber mats compared to the control (CNT) after 48 h cell culture. Our findings showed for the first time PEP loaded PCL electrospun fiber mats with antibiotic-free antibacterial activity as promising candidates for wound healing applications

    Evaluation of Electrospun Poly(ε-Caprolactone)/Gelatin Nanofiber Mats Containing Clove Essential Oil for Antibacterial Wound Dressing

    Get PDF
    The objective of this study was to produce antibacterial poly(ε-caprolactone) (PCL)-gelatin (GEL) electrospun nanofiber mats containing clove essential oil (CLV) using glacial acetic acid (GAA) as a “benign” (non-toxic) solvent. The addition of CLV increased the fiber diameter from 241 ± 96 to 305 ± 82 nm. Aside from this, the wettability of PCL-GEL nanofiber mats was increased by the addition of CLV. Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the presence of CLV, and the actual content of CLV was determined by gas chromatography–mass spectrometry (GC-MS). Our investigations showed that CLV-loaded PCL-GEL nanofiber mats did not have cytotoxic effects on normal human dermal fibroblast (NHDF) cells. On the other hand, the fibers exhibited antibacterial activity against Staphylococcus aureus and Escherichia coli. Consequently, PCL-GEL/CLV nanofiber mats are potential candidates for antibiotic-free wound healing applications

    Fabrication of Biocompatible Electrospun Poly(ε-caprolactone)/Gelatin Nanofibers Loaded with Pinus radiata Bark Extracts for Wound Healing Applications

    No full text
    In this study, poly(ε-caprolactone) (PCL)/gelatin (GEL) electrospun nanofibers loaded with two different concentrations of Pinus radiata bark extracts (PEs) were fabricated via electrospinning for wound healing applications. The effects of incorporating PE into PCL/GEL electrospun nanofibers were investigated regarding their physicochemical properties and in vitro biocompatibility. All electrospun nanofibers showed smooth, uniform, and bead-free surfaces. Their functional groups were detected by ATR-FTIR spectroscopy, and their total phenol content was measured by a Folin–Ciocalteu assay. With PE addition, the electrospun nanofibers exhibited an increase in their wettability and degradation rates over time and a decrease in their tensile stress values from 20 ± 4 to 8 ± 2 MPa for PCL/GEL and PCL/GEL/0.36%PE samples, respectively. PE was also released from the fibrous mats in a rather controlled fashion. The PCL/GEL/0.18%PE and PCL/GEL/0.36%PE electrospun nanofibers inhibited bacterial activity at around 6 ± 0.1% and 23 ± 0.3% against E. coli and 14 ± 0.1% and 18 ± 0.2% against S. aureus after 24 h incubation, respectively. In vitro cell studies showed that PE-loaded electrospun nanofibers enhanced HaCaT cell growth, attachment, and proliferation, favoring cell migration towards the scratch area in the wound healing assay and allowing a complete wound closure after 72 h treatment. These findings suggested that PE-loaded electrospun nanofibers are promising materials for antibiotic-free dressings for wound healing applications

    Biocompatibility of plasma-treated poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofiber mats modified by silk fibroin for bone tissue regeneration

    No full text
    WOS: 000382600000099PubMed ID: 27524087The objective of this study was to produce biocompatible plasma-treated and silk-fibroin (SF) modified poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofiber mats. The mats were plasma-treated using O-2 or N-2 gas to increase their hydrophilicity followed by SF immobilization for the improvement of biocompatibility. Contact angle measurements and SEM showed increased hydrophilicity and no disturbed morphology, respectively. Cell proliferation assay revealed that SF modification together with N-2 plasma (PS/N-2) promoted higher osteoblastic (SaOs-2) cell viability. Although, O-2 plasma triggered more mineral formation on the mats, it showed poor cell viability. Consequently, the PS/N-2 nanofiber mats would be a potential candidate for bone tissue engineering applications. (C) 2016 Elsevier B.V. All rights reserved

    Fabrication and Characterization of Cinnamaldehyde-Loaded Mesoporous Bioactive Glass Nanoparticles/PHBV-Based Microspheres for Preventing Bacterial Infection and Promoting Bone Tissue Regeneration

    No full text
    Polyhydroxybutyrate-co-hydroxyvalerate (PHBV) is considered a suitable polymer for drug delivery systems and bone tissue engineering due to its biocompatibility and biodegradability. However, the lack of bioactivity and antibacterial activity hinders its biomedical applications. In this study, mesoporous bioactive glass nanoparticles (MBGN) were incorporated into PHBV to enhance its bioactivity, while cinnamaldehyde (CIN) was loaded in MBGN to introduce antimicrobial activity. The blank (PHBV/MBGN) and the CIN-loaded microspheres (PHBV/MBGN/CIN5, PHBV/MBGN/CIN10, and PHBV/MBGN/CIN20) were fabricated by emulsion solvent extraction/evaporation method. The average particle size and zeta potential of all samples were investigated, as well as the morphology of all samples evaluated by scanning electron microscopy. PHBV/MBGN/CIN5, PHBV/MBGN/CIN10, and PHBV/MBGN/CIN20 significantly exhibited antibacterial activity against Staphylococcus aureus and Escherichia coli in the first 3 h, while CIN releasing behavior was observed up to 7 d. Human osteosarcoma cell (MG-63) proliferation and attachment were noticed after 24 h cell culture, demonstrating no adverse effects due to the presence of microspheres. Additionally, the rapid formation of hydroxyapatite on the composite microspheres after immersion in simulated body fluid (SBF) during 7 d revealed the bioactivity of the composite microspheres. Our findings indicate that this system represents an alternative model for an antibacterial biomaterial for potential applications in bone tissue engineering

    Quaternary and pentanar mesoporous bioactive glass nanoparticles as novel nanocarriers for gallic acid: Characterisation, drug release and antibacterial activity

    No full text
    Mesoporous bioactive glass nanoparticles (MBGNs) have gained considerable attention as multifunctional platforms for simultaneously releasing ions and phytotherapeutic compounds. Thus, in the first part of this study, MBGNs based on the 53SiO₂–4P₂O₅–20CaO–23Na₂O (wt %) (S53P4) composition were synthesized by a microemulsion assisted sol-gel method. More precisely, P₂O₅ was substituted with B₂O₃ and Na₂O with MgO and/or ZnO. For B containing MBGNs all ions were successfully incorporated into the borosilicate structure without inducing crystallisation. In contrast, for S53P4 a poorly crystalline hydroxyapatite phase was identified. All MBGNs had a typical spherical shape with an internal radial network of mesopores. Additionally, for S53P4 a second fraction of particles with a smaller size and compact core was observed. Secondly, the feasibility of MBGNs as nanocarriers for gallic acid (GA) was evaluated. All drug-loaded samples showed a similar in vitro release profile which can be divided into three main phases: burst release, slow release and sustained release. Among the different compositions, S53P4 exhibited the highest cumulative release, whereas B and Mg containing particles exhibited the opposite. The presence of Zn in the MBGN compositions improved their antibacterial effect against both E. coli and S. aureus. Moreover, it was shown that depending on the MBGNs’ composition, the antibacterial activity of GA loaded MBGNs can be enhanced. Thus, the results proved that MBGNs can be used as controlled drug delivery system and, by tailoring the composition, a synergistic antibacterial effect can be achieved, considering that GA and biologically active ions are simultaneously released.Universidad de Sevilla (CITUS

    Neurological Level in Spinal Cord Injury: Comparison Between ASIA Standards and Transcranial Magnetic Stimulation

    No full text
    Objective: The aim of the present study was to compare the findings of neurological examination performed according to the American Spinal Injury Association (ASIA) Standards with Motor Evoked Potentials (MEPs) obtained from paravertebral muscles of complete traumatic spinal cord injured (SCI) patients by using Transcranial Magnetic Stimulation (TMS)

    Melaleuca armillaris Essential Oil as an Antibacterial Agent: The Use of Mesoporous Bioactive Glass Nanoparticles as Drug Carrier

    Get PDF
    Bioactive glasses have been proposed for bone tissue engineering due to their excellent biocompatibility and osteo-inductive behaviour. The generation of mesoporous bioactive glass (nano) particles adds a high surface area for the dissolution and release of bioactive ions, and the possibility to load them with different drugs for antibacterial purposes. Essential oils (EO) are an interesting resource for alternative medical therapy, providing antimicrobial compounds that come from organic/natural resources like aromatic plants. Also, a biological polymer, such as chitosan, could be used to control the release of active agents from mesoporous bioactive glass (MBG) loaded particles. This work presents MBG particles with nominal composition (in mol) 60% SiO2, 30% CaO and 10% P2O5, loaded with essential oil of Melaleuca armillaris, which contains 1,8-cineol as the main active component, with an inhibitory in vitro activity against several bacterial species. Also, co-loading with a broad-spectrum antibiotic, namely gentamicin, was investigated. The MBG particles were found to be of around 300nm in diameter and to exhibit highly porous open structure. The release of EO from the particles reached 72% of the initial content after the first 24 h, and 80% at 48 h of immersion in phosphate buffered solution. Also, the MBG particles with EO and EO-gentamicin loading presented in vitro apatite formation after 7 days of immersion in simulated body fluid. The antibacterial tests indicated that the main effect, after 24 h of contact with the bacteria, was reached either for the MBG EO or MBG EO-gentamicin particles against E. coli, while the effect against S. aureus was less marked. The results indicate that MBG particles are highly bioactive with the tested composition and loaded with EO of Melaleuca armillaris. The EO, also combined with gentamicin, acts as an antibacterial agent but with different efficacy depending on the bacteria type

    Trigemino-cervical reflex in spinal cord injury

    No full text
    Abnormal enhancement of polysynaptic brainstem reflexes has been previously reported in patients with spinal cord injury (SCI). We aimed to investigate trigemino-cervical reflex (TCR) in SCI since it may reflect alterations in the connections of trigeminal proprioceptive system and cervical motoneurons. Consecutive 14 patients with SCI and 16 healthy subjects were included in this study. All patients were in the chronic phase. TCR was recorded over sternocleidomastoid (SCM) and splenius capitis (SC) muscles by stimulation of infraorbital nerve. We measured onset latency, amplitudes and durations of responses and compared between groups. We obtained stable responses over both muscles after one sided stimulation in healthy volunteers whereas probability of TCR was decreased in patients over both SCM (78.6% vs. 100%, p = 0.050) and SC (71.4% vs. 100%, p = 0.022). The absence of TCR was related to use of oral baclofen (>= 50 mg/day). However, when present, responses of SCI group had higher amplitudes and were more persistent. We demonstrated that TCR probability was similar to healthy subjects in SCI patients who used no or low dose oral baclofen. But it had higher amplitudes and longer durations. It was not obtained in only two patients who used oral baclofen more than 50 mg/day. (C) 2014 Elsevier Ireland Ltd. All rights reserved
    corecore