131 research outputs found

    New values of gravitational moments J2 and J4 deduced from helioseismology

    Get PDF
    By applying the theory of slowly rotating stars to the Sun, the solar quadrupole and octopole moments J2 and J4 were computed using a solar model obtained from CESAM stellar evolution code (Morel, 1997) combined with a recent model of solar differential rotation deduced from helioseismology (Corbard et al., 2002). This model takes into account a near-surface radial gradient of rotation which was inferred and quantified from MDI f-mode observations by Corbard and Thompson (2002). The effect of this observational near-surface gradient on the theoretical values of the surface parameters J2, J4 is investigated. The results show that the octopole moment J4 is much more sensitive than the quadrupole moment J2 to the subsurface radial gradient of rotation

    PICARD payload thermal control system and general impact of the space environment on astronomical observations

    No full text
    International audiencePICARD is a spacecraft dedicated to the simultaneous measurement of the absolute total and spectral solar irradiance, the diameter, the solar shape, and to probing the Sun's interior by the helioseismology method. The mission has two scientific objectives, which are the study of the origin of the solar variability, and the study of the relations between the Sun and the Earth's climate. The spacecraft was successfully launched, on June 15, 2010 on a DNEPR-1 launcher. PICARD spacecraft uses the MYRIADE family platform, developed by CNES to use as much as possible common equipment units. This platform was designed for a total mass of about 130 kg at launch. This paper focuses on the design and testing of the TCS (Thermal Control System) and in-orbit performance of the payload, which mainly consists in two absolute radiometers measuring the total solar irradiance, a photometer measuring the spectral solar irradiance, a bolometer, and an imaging telescope to determine the solar diameter and asphericity. Thermal control of the payload is fundamental. The telescope of the PICARD mission is the most critical instrument. To provide a stable measurement of the solar diameter over three years duration of mission, telescope mechanical stability has to be excellent intrinsically, and thermally controlled. Current and future space telescope missions require ever-more dimensionally stable structures. The main scientific performance related difficulty was to ensure the thermal stability of the instruments. Space is a harsh environment for optics with many physical interactions leading to potentially severe degradation of optical performance. Thermal control surfaces, and payload optics are exposed to space environmental effects including contamination, atomic oxygen, ultraviolet radiation, and vacuum temperature cycling. Environmental effects on the performance of the payload will be discussed. Telescopes are placed on spacecraft to avoid the effects of the Earth atmosphere on astronomical observations (turbulence, extinction, ...). Atmospheric effects, however, may subsist when spacecraft are launched into low orbits, with mean altitudes of the order of 735 km

    The space instrument SODISM, a telescope to measure the solar diameter

    No full text
    International audiencePICARD is a satellite dedicated to the simultaneous measurement of the solar diameter, the solar shape, the solar irradiance and the solar interior. These measurements obtained throughout the mission will allow study of their variations as a function of solar activity. The objectives of the PICARD mission are to improve our knowledge of the functioning of our star through new observations and the influence of the solar activity on the climate of the Earth. PICARD was launched on June 15, 2010 on a Dnepr-1 launcher. SODISM (SOlar Diameter Imager and Surface Mapper), an instrument of the PICARD payload, is a high resolution imaging telescope. It was built on an innovative technological concept. SODISM allows us to measure the solar diameter and shape with an accuracy of a few milliarcseconds, and to perform helioseismologic observations to probe the solar interior. SODISM provides continuous observations of the Sun since mid-July 2010. A brief comparison of measurements of solar diameter since the seventeenth century and solar diameter variability are described. In this article, we present the instrumental concept and design and we give an overview of the thermal stability of the telescope. First results from the SODISM experiment are briefly reported (housekeeping and image)

    Estimation of atmospheric turbidity over Ghardaïa city

    No full text
    International audienceThe atmospheric turbidity expresses the attenuation of the solar radiation that reaches the Earth's surface under cloudless sky and describes the optical thickness of the atmosphere. We investigate the atmospheric turbidity over Gharda¨ıa city using two turbidity parameters, the Linke turbidity factor and the Angstr ¨om turbidity coefficient. Their values and temporal variation are obtained from data recorded between 2004 and 2008 at Gharda¨ıa. The results show that both parameters have the same trend along the year. They reach their maximumaround summer months and their minimum around winter months. The monthly average value varies between 1.3 and 5.6 for the Linke turbidity factor and between 0.02 and 0.19 for the Angstr ¨om turbidity coefficient. We find that 39.8% of the Linke turbidity factor values are less than 3, 47.5% are between 3 and 5 and only 12.7% are greater than 5. For the Angstr ¨om turbidity coefficient, 9.4% of the values are less than 0.02, 75.4% are between 0.02 and 0.15 and 15.2% exceed 0.15

    Processing Method Effect on Sun Diameter Measurement with CCD Solar Astrolabe

    No full text
    International audiencePhotometric Sun diameter measurement is based on the calculation of the inflection point of the solar limb. In ground measurement, this point is located at a position on the solar limb where the signal-to-noise ratio is very high, which necessitates the appropriate filtering techniques to eliminate the noise while preserving its position. In this paper, we compare the filtering method currently in use to process the CCD solar astrolabe data, the FFTD method widely used, with a different method that we propose. Using the acquired data from the CCD astrolabe at Calern, France during 1997, we can obtain a mean difference of 130 mas in the measured radii

    Solar astrophysical fundamental parameters

    No full text
    International audienceThe accurate determination of the solar photospheric radius has been an important problem in astronomy for many centuries. From the measurements made by the PICARD spacecraft during the transit of Venus in 2012, we obtained a solar radius of 696,156 ±145 kilometres. This value is consistent with recent measurements carried out atmosphere. This observation leads us to propose a change of the canonical value obtained by Arthur Auwers in 1891. An accurate value for total solar irradiance (TSI) is crucial for the Sun-Earth connection, and represents another solar astrophysical fundamental parameter. Based on measurements collected from different space instruments over the past 35 years, the absolute value of the TSI, representative of a quiet Sun, has gradually decreased from 1,371W.m−2 in 1978 to around 1,362W.m−2 in 2013, mainly due to the radiometers calibration differences. Based on the PICARD data and in agreement with Total Irradiance Monitor measurements, we predicted the TSI input at the top of the Earth's atmosphere at a distance of one astronomical unit (149,597,870kilometres) from the Sun to be 1,362±2.4W.m−2, which may be proposed as a reference value. To conclude, from the measurements made by the PICARD spacecraft, we obtained a solar photospheric equator-to-pole radius difference value of 5.9 ±0.5 kilometres. This value is consistent with measurements made by different space instruments, and can be given as a reference value

    Simluation of the anisoplanatic angle-of-arrival fluctuations measured on the solar edge images

    No full text
    International audienceAnisoplanatism in Adaptive Optics or Differential Astrometry as in ground-based solar diameter measurement needs the knowledge of atmospheric turbulence profiles. MISolFA is a monitor dedicated to statistically estimate daytime turbulence profiles C-{n}**{2}(h) from solar limb agitation measurements. In order to understand the statistics of the system performance, an accurate numerical simulation of multi-layer anisoplanatic Angle-of-Arrival fluctuations simultaneously measured over different lines of sight is performed. The method developed for this purpose could also be used to simulate other anisoplanatic optical effects of turbulence like phase distortions for imaging. It is based on a modified approach to the Fourier-based methods. Comparing the theoretical and the simulation statistics verifies the validity of the simulation method and its high efficiency. The simulation is then used to test the accuracy of the inversion methods applied to the Angle-of-Arrival statistics to retrieve the turbulence profiles. The method and some results of the simulation will be presented

    On solar radius measurements with PICARD

    No full text
    The PICARD TeamInternational audienceSolar diameter measurements performed from the ground for several decades seem to indicate a relation between the solar diameter and the solar activity. If this relationship is confirmed, it would be possible to use measurements of solar diameter as a proxy of solar activity in the past since the 1715 solar eclipses, and to use this input for the reconstruction of solar irradiance in climate models. However the interpretation of ground observations is controversial, ground-based measurements being affected by refraction, by atmospheric turbulence, and perhaps by atmospheric aerosols scattering. The only way to be free from atmospheric effects is to measure from space. This is the reason why, since the beginning, the PICARD program included a space and a ground component set up at the Calern site of the Observatoire de la Côte dAzur. During the last 4 years, the PICARD space mission has been used for observing the apparent solar diameter. First results of the astrometry program include a study of the June 2012 Venus transit for solar diameter determination. From this, the value of the solar radius from one astronomical unit was found to be equal to 959.86 arc-seconds at 607.1 nm. However, concerning observed variations in time of the solar radius, instrumental effects affect the results. Space is known to represent a harsh environment for optical instruments. Nevertheless, we can use the PICARD data to monitor the solar radius variation. PICARD aims to perpetuate historical series of the solar radius measurements, in particular during the solar cycle 24. This paper presents solar radius measurements obtained with PICARD

    Fresnel diffraction and polychromatic effects on angle-of-arrival fluctuations

    No full text
    International audienceSeeing monitoring in astronomy is widely based on the statistical analysis of angle-of-arrival (AA) fluctuations, which are usually modelled in the framework of the near-field approximation where diffraction through turbulence is ignored. They are consequently believed to be completely independent of wavelength. We discuss in this paper the influence of Fresnel diffraction from distant turbulence layers on multi-wavelength (polychromatic) AA fluctuations. For this purpose we propose a model for polychromatic AA fluctuations in weak turbulence conditions and derive an analytical model for their variance in the case where scintillation is ignored. We also present a numerical simulation that includes scintillation and justifies that this latter may be neglected in the analytical model
    • …
    corecore