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New values of gravitational moments J2 and J4 deduced

from helioseismology
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C.R.A.A.G - Observatoire d’Alger BP 63 Bouzareah, Alger, Algerie.

J. Provost and G. Berthomieu
Departement Cassini, UMR CNRS 6529 - Observatoire de la Côte d’Azur, BP
4229, 06304 Nice CEDEX4, France.

Abstract. By applying the theory of slowly rotating stars to the Sun, the solar
quadrupole and octopole moments J2 and J4 were computed using a solar model
obtained from CESAM stellar evolution code (Morel (1997)) combined with a recent
model of solar differential rotation deduced from helioseismology (Corbard et al.

(2002)). This model takes into account a near-surface radial gradient of rotation
which was inferred and quantified from MDI f-modes observations by Corbard and
Thompson (2002). The effect of this observational near-surface gradient on the
theoretical values of the surface parameters J2, J4 is investigated. The results show
that the octopole moment J4 is much more sensitive than the quadrupole moment
J2 to the subsurface radial gradient of rotation.

1. Introduction

Several theoretical determinations of the J2 and J4 gravitational mo-
ments have been undertaken in case of different solar differential rota-
tion laws : (i) only radius dependence (Goldreich and Schubert, 1968;
Paternò, Sofia, and Di Mauro, 1996), (ii) quadratic expansion in colati-
tude cosine terms (Ulrich and Hawkins (1981a and 1981b)), (iii) angular
velocity distribution with a slowly latitude variation determined by
mean of helioseimology technics (Gough (1982)). More recent determi-
nations are those performed by : (i) Armstrong and Kuhn (1999) using
a quadratic expansion rotation law with coefficients obtained by fitting
higher resolution helioseismic interior rotation data from MDI (Scherrer
et al. (1995)), (ii) Godier and Rozelot (1999) and (iii) Roxburgh (2001)
using the differential rotation model given by Kosovichev (1996) from
BBSO p-modes observations. This model takes into account the pres-
ence of a constant near-surface radial gradient based on the assumption
that the angular momentum is preserved in the supergranulation layer.
The aim of the present work is a contribution to J2 and J4 determina-
tions using a new analytical model of solar differential rotation provided
by Corbard et al. (2002) which has a latitudinal dependent profile of
the near-surface radial gradient of rotation.
If we consider the Sun as an axial symmetry distribution of matter in
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rotation, the outer gravitational field φout is expressed as :

φout(r, θ) = −
GM⊙

r

[

1 −
∞
∑

n=1

(

R⊙

r

)2n

J2nP2n(cos θ)

]

(1)

where J2n are the gravitational moments, P2n the Legendre polynomials
and r, θ respectively the distance from the Sun centre and the angle to
the symmetry axis (colatitude).
Since the solar rotation is slow, it induces small perturbations around
the spherical equilibrium. These perturbations can be expanded on Leg-
endre polynomial basis. The distribution of the gravitational potential
in the Sun can be written :

φ(r, θ) = φ0(r) + φ1(r, θ) = φ0(r) +
∞
∑

n=1

φ12n(r)P2n(u) (2)

where u = cosθ.
The gravitational moments J2n are obtained assuming the continuity
of the gravitational potential at the surface :

J2n =
R⊙

GM⊙

φ12n(R⊙) (3)

The perturbed potential is obtained by linearization of the equation of
hydrostatic equilibrium and the Poisson equation, leading to :

d2φ12n

dr2
+

2

r

dφ12n

dr
− (2n(2n + 1) + UV )

φ12n

r2
= U [(V + 2)B2n +

+ r
dB2n

dr
+

4n + 1

2

∫ +1

−1
(1 − u2)P2n(u)Ω(r, u)2du] (4)

where U = 4πρ0r
3/Mr, V = dlnρ0/dlnr, Mr is the mass contained in

a sphere of radius r and Ω(r, u) the angular velocity. B2n is given by:

B2n(r) = −
1

2n!

4n + 1

22n+1

∫ +1

−1
uΩ(r, u)2

d2n−1

du2n−1
((u2 − 1)2n)du (5)

Equation (3) is integrated with the usual boundary conditions, us-
ing U and V provided by a solar model obtained from the CESAM

stellar evolution code (Morel (1997)) and a rotation law derived from
helioseismology.
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2. Analytical model of solar differential rotation

We consider the recent Corbard et al. (2002) model of solar differen-
tial rotation and, for comparison, the Kosovichev one (1996) already
used by Roxburgh (2001) and Godier and Rozelot (1999). The Corbard
model contains a near-surface radial gradient of rotation inferred from
the radial dependence of the MDI f-modes observations (Corbard and
Thompson (2002)). Two estimations of this gradient have been derived
from different sets of modes leading to two rotation models denoted af-
terward by (a) and (b). As for Kosovichev’s model, the surface rotation
is forced to surface plasma observations (Snodgrass, 1992).
Figure 1 shows the solar rotation profiles corresponding to these models
computed for different latitudes. Kosovichev’s model presents a nega-
tive constant subsurface radial gradient. The Corbard models have a
negative value of the radial gradient at low latitude which is twice
smaller than Kosovichev ones. At high latitude, the gradients are pos-
itive with larger magnitudes for the Corbard model (b).
We use an analytical expression derived respectively by Corbard et al.

(2002) and Dikpati et al. (2002) for the Corbard rotation laws and for
the Kosovichev one. We recall hereafter the full set of equations and
parameters they give for these rotation laws :

Ω(r, u) = A1(r, u) + Ψtac(r)
(

Ωcz − Ω0 + a2u
2 + a4u

4
)

(6)

where

A1(r, u) = Ω0 + Ψcz(r) {α(u)(r − rcz)} +

+ Ψs(r) {Ωeq − Ωcz − β(u)(r − R⊙) − α(u)(r − rcz)} (7)
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Figure 1. Profiles of the solar rotation from 0.55R⊙ to the surface for different lati-
tudes computed each 10◦ from the Equator (top) to the Pole (bottom).(1) Model
of Kosovichev. (2) Model of Corbard (a). (3) Model of Corbard (b).
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with

α(u) =
Ωeq − Ωcz + β(u)(R⊙ − rs)

rs − rcz

Ω0, Ωeq and Ωcz are respectively the constant rotation of the radiative
interior zone, the equatorial rate at the surface and at the top rcz of
the tachocline localized at rtac. The a2 and a4 constants describe the
latitudinal differential rotation. β(u) represents the latitudinal depen-
dance of the rotation radial gradient below the surface down to a radius
rs. This gradient depends on the latitude through the β0, β3 and β6

constants by the Equation : β(u) = β0 + β3u
3 + β6u

6.
The Ψ

x
function where x stands for tac, cz or s, models the transition

between different gradients. An error function centered at rx with width
ωx is used for this goal : Ψx(r) = 0.5 (1 + erf [2(r − rx)/ωx]).
All the rotation laws have the following common parameters : Ω0 =
435nHz, Ωeq = 452.5nHz, Ωcz = 453.5nHz, rtac = 0.69R⊙, rcz =
0.71R⊙, a2 = −61nHz, a4 = −73.5nHz. The parameters which are
different for the three laws are given in Table I.

Table I. The non common parameter values between the rotation models. The β0, β3

and β6 parameters are given in nHz/R⊙.

model ωtac/R⊙ ωcz/R⊙ ωs/R⊙ rs/R⊙ β0 β3 β6

Kosovichev (1996) 0.1 0 0 0.983 891.5 0 0

Corbard (a) (2002) 0.05 0.05 0.05 0.97 437 -214 -503

Corbard (b) (2002) 0.05 0.05 0.05 0.97 437 0 -1445

3. Results and discussion

We present in Table II the computed values of J2 and J4 obtained
with different solar rotation models described in Section 2 and with
an uniform rotation equal to the rotation rate of the solar radiative
zone Ω0, for comparison. Table III gives also some values of J2 and J4

presented by other authors.
Our results show that the differential rotation in the convective zone
reduces J2 value of about 0.8% when the Corbard models are considered
and about 0.5% in the case of Kosovichev’s model. For this last case, our
J2 determination is larger than the value found by Godier and Rozelot
(1999) but in agreement with the one obtained by Roxburgh (2001),
both using Kosovichev’s model. Our values are also in agreement with
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Table II. The J2 and J4 values corresponding to the
different rotation models. Ω0 = 2.733 µrd/s is the
rotation in the radiative zone.

Model of rotation J2(×10−7) J4(×10−9)

Uniform rotation (Ω0) 2.217 0

Kosovichev (1996) 2.205 -4.455

Corbard (a) (2002) 2.201 -5.601

Corbard (b) (2002) 2.198 -4.805

those given by Paternò et al. (1996), Pijpers (1998) and Armstrong and
Kuhn (1999) (see Table III). All these values deviate from the range
obtained by Ulrich and Hawkins (1981a and 1981b) in the case of the
rotation law defined as a simple quadratic expansion. The difference
between the subsurface radial gradients induces only a small reduction
on J2 values. It is about 0.25% between Kosovichev’s model and Cor-
bard’s ones. This difference is however about 0.1% between the two
Corbard models.
As expected, the effect of the subsurface radial gradient is more im-

portant on J4 gravitational moment. J4 absolute values obtained using
the models of Corbard (a) and (b) are respectively about 20% and 7%
larger than the one obtained with Kosovichev’s model. The (a) Corbard
model increases the J4 absolute value of about 14% compared to the
one obtained from the (b) Corbard model. Our |J4| value corresponding
to Kosovichev’s model is in agreement with the one given by Roxburgh
(2001) using the same model. However, those obtained from Corbard’s
models are larger than other values given in Table III. All these values

Table III. Some computed values of J2 and J4 obtained by other
authors. The large value of Gough (1982) is due to an estimation of
the internal rotation deduced from earlier helioseismic observations

Authors J2(×10−7) J4(×10−9)

Ulrich and Hawkins (1981) 1.0 < J2 < 1.5 2.0 < |J4| < 5.0

Gough (1982) 36 -

Paternò et al. (1996) 2.22 -

Pijpers (1998) 2.18 -

Godier and Rozelot (1999) 1.6 -

Armstrong and Kuhn (1999) 2.22 −3.84

Roxburgh (2001) 2.206 −4.45
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are consistent with the range given by Ulrich and Hawkins (1981a and
1981b) except for the (a) Corbard model.
Rotation induces a distortion of the solar surface which can be roughly
related to J2 through the following quantity often called oblateness :

Re − Rp

R⊙

≈
3

2
J2 +

Ω2
sR

3
⊙

2GM⊙

(8)

where Ωs is an effective rotation rate. Re, Rp and R⊙ are respectively
the equatorial, polar and mean solar radius. This formula is strictly
valid for an uniform rotation or for a rotation constant on cylinders.
For a solar rotation which presents a complex profile not constant on
cylinders, Paternò, Sofia, and Di Mauro (1996) proposed an expression
of Ωs derived from the surface rotation Ω(R⊙, u). In our case, Ωs will
be the same for the three models since they are built so as to have
the same surface rotation. Thus, in this rough description, the effect
of different subsurface radial gradients of rotation on the oblateness
appears through the modification of the J2 gravitational moment. It
is negligible since the main term in Equation (8) is the surface rota-
tion term. The value of the oblateness found is 9.1 × 10−6. It is in
agreement with observations of Lydon and Sofia (1996) and Rozelot
and Rösch (1997) but slightly larger than those of Kuhn et al. (1998)
and Armstrong and Kuhn (1999). Rozelot, Godier, and Lefebvre (2001)
presented new developments taking into account the surface latitudinal
differential rotation to link J2 and J4 to the solar equatorial and polar
radius. To the lowest order, their formula reduces to Equation (8) with
another definition of Ωs. For our surface rotation, their formula leads
to an oblateness value equal to 11.4×10−6. We have estimated that the
effects of the second terms are of the order of (4/1000) in the case of
Kosovichev’s model. New constraints on the oblateness and the shape
of the solar surface will hopefully be provided by the future PICARD

microsatellite CNES-mission (Thuillier et al. (2003)).
In conclusion, the octopole moment J4 is much more sensitive than
the quadrupole moment J2 to the inclusion of the latitudinal and ra-
dial differential rotation in the convective zone and particularly to the
subsurface radial gradient of rotation. Indeed, an important subsurface
radial gradient at high latitude decreases significantly the value of |J4|
while it does not affect significantly the J2 value.
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