480 research outputs found

    Better Meta : using EdNA\u27s new Metadata tools

    Full text link

    The EdNA metadata toolsets : a case study

    Full text link

    Managing online resources for teaching and learning

    Full text link

    Computational fluid dynamics modeling of symptomatic intracranial atherosclerosis may predict risk of stroke recurrence.

    Get PDF
    BackgroundPatients with symptomatic intracranial atherosclerosis (ICAS) of ≥ 70% luminal stenosis are at high risk of stroke recurrence. We aimed to evaluate the relationships between hemodynamics of ICAS revealed by computational fluid dynamics (CFD) models and risk of stroke recurrence in this patient subset.MethodsPatients with a symptomatic ICAS lesion of 70-99% luminal stenosis were screened and enrolled in this study. CFD models were reconstructed based on baseline computed tomographic angiography (CTA) source images, to reveal hemodynamics of the qualifying symptomatic ICAS lesions. Change of pressures across a lesion was represented by the ratio of post- and pre-stenotic pressures. Change of shear strain rates (SSR) across a lesion was represented by the ratio of SSRs at the stenotic throat and proximal normal vessel segment, similar for the change of flow velocities. Patients were followed up for 1 year.ResultsOverall, 32 patients (median age 65; 59.4% males) were recruited. The median pressure, SSR and velocity ratios for the ICAS lesions were 0.40 (-2.46-0.79), 4.5 (2.2-20.6), and 7.4 (5.2-12.5), respectively. SSR ratio (hazard ratio [HR] 1.027; 95% confidence interval [CI], 1.004-1.051; P = 0.023) and velocity ratio (HR 1.029; 95% CI, 1.002-1.056; P = 0.035) were significantly related to recurrent territorial ischemic stroke within 1 year by univariate Cox regression, respectively with the c-statistics of 0.776 (95% CI, 0.594-0.903; P = 0.014) and 0.776 (95% CI, 0.594-0.903; P = 0.002) in receiver operating characteristic analysis.ConclusionsHemodynamics of ICAS on CFD models reconstructed from routinely obtained CTA images may predict subsequent stroke recurrence in patients with a symptomatic ICAS lesion of 70-99% luminal stenosis

    Lipid Profiles from Dried Blood Spots Reveal Lipidomic Signatures of Newborns Undergoing Mild Therapeutic Hypothermia after Hypoxic-Ischemic Encephalopathy.

    Get PDF
    Hypoxic-ischemic encephalopathy (HIE) is associated with perinatal brain injury, which may lead to disability or death. As the brain is a lipid-rich organ, various lipid species can be significantly impacted by HIE and these correlate with specific changes to the lipidomic profile in the circulation. Objective: To investigate the peripheral blood lipidomic signature in dried blood spots (DBS) from newborns with HIE. Using univariate analysis, multivariate analysis and sPLS-DA modelling, we show that newborns with moderate-severe HIE (n = 46) who underwent therapeutic hypothermia (TH) displayed a robust peripheral blood lipidomic signature comprising 29 lipid species in four lipid classes; namely phosphatidylcholine (PC), lysophosphatidylcholine (LPC), triglyceride (TG) and sphingomyelin (SM) when compared with newborns with mild HIE (n = 18). In sPLS-DA modelling, the three most discriminant lipid species were TG 50:3, TG 54:5, and PC 36:5. We report a reduction in plasma TG and SM and an increase in plasma PC and LPC species during the course of TH in newborns with moderate-severe HIE, compared to a single specimen from newborns with mild HIE. These findings may guide the research in nutrition-based intervention strategies after HIE in synergy with TH to enhance neuroprotection.NIHR Cambridge Biomedical Research Centre (146281) & Biotechnology and Biological Sciences Research Council (BB/P028195/1

    Evolution Acts on Enhancer Organization to Fine-Tune Gradient Threshold Readouts

    Get PDF
    The elucidation of principles governing evolution of gene regulatory sequence is critical to the study of metazoan diversification. We are therefore exploring the structure and organizational constraints of regulatory sequences by studying functionally equivalent cis-regulatory modules (CRMs) that have been evolving in parallel across several loci. Such an independent dataset allows a multi-locus study that is not hampered by nonfunctional or constrained homology. The neurogenic ectoderm enhancers (NEEs) of Drosophila melanogaster are one such class of coordinately regulated CRMs. The NEEs share a common organization of binding sites and as a set would be useful to study the relationship between CRM organization and CRM activity across evolving lineages. We used the D. melanogaster transgenic system to screen for functional adaptations in the NEEs from divergent drosophilid species. We show that the individual NEE modules across a genome in any one lineage have independently evolved adaptations to compensate for lineage-specific developmental and/or genomic changes. Specifically, we show that both the site composition and the site organization of NEEs have been finely tuned by distinct, lineage-specific selection pressures in each of the three divergent species that we have examined: D. melanogaster, D. pseudoobscura, and D. virilis. Furthermore, by precisely altering the organization of NEEs with different morphogen gradient threshold readouts, we show that CRM organizational evolution is sufficient for explaining changes in enhancer activity. Thus, evolution can act on CRM organization to fine-tune morphogen gradient threshold readouts over a wide dynamic range. Our study demonstrates that equivalence classes of CRMs are powerful tools for detecting lineage-specific adaptations by gene regulatory sequences
    corecore