105 research outputs found

    Small scale anisotropy in turbulent shearless mixing

    Get PDF
    We have imagined a numerical experiment to explore the onset of turbulent intermittency associated with a spatial perturbation of the correlation length. We place two isotropic regions, with different integral scales, inside a volume where the turbulent kinetic energy is initially uniform and leave them to interact and evolve in time. The different length scales produce different decay rates in the two regions. Since the smaller-scale region decays faster, a transient turbulent energy gradient is generated at the interface between the two regions. The transient is characterized by three phases in which the kinetic energy gradient across the interface grows, peaks and then slowly decays. The transient lifetime is almost proportional to the initial ratio of the correlation lengths. The direct numerical simulations also show that the interface width grows in time. The velocity moments inside this interaction zone are seen to depart from their initial isotropic values and, with a certain lag, the anisotropy is seen to spread to small scales. The longitudinal derivative moments also become anisotropic after a few eddy turnover times. This anisotropic behaviour is different from that observed in sheared homogeneous turbulent flows, where high transverse derivative moments are generated, but longitudinal moments almost maintain the isotropic turbulence values. Apart from the behaviour of the energy gradient transients, the results also show the timescaling of the interface diffusion width, and data on the anisotropy of the large and small scales, observed through one-point statistics determined inside the intermittency sublayer, which is associated with the interaction zone. Supplemental Material Online: http://prl.aps.org/supplemental/PRL/v107/i19/e19450

    Self-similarity of the turbulent mixing with a constant in time macroscale gradient

    Get PDF
    In the absence of kinetic energy production, we consider that the influence of the initial conditions is characterized by the presence of an energy gradient or by the concurrency of an energy and a macroscale gradient on turbulent transport. Here, we present a similarity analysis that interprets two new results on the subject recently obtained by means of numerical experiments on shearless mixing (Tordella & Iovieno, 2005). In short, the two results are: i -- The absence of the macroscale gradient is not a sufficient condition for the setting of the asymptotic Gaussian state hypothesized by Veeravalli and Warhaft (1989), where, regardless of the existence of velocity variance distributions, turbulent transport is mainly diffusive and the intermittency is nearly zero up to moments of order four. In fact, it was observed that the intermittency increases with the energy gradient, with a scaling exponent of about 0.29; ii -- If the macroscale gradient is present, referring to the situation where the macroscale gradient is zero but the energy gradient is not, the intermittency is higher if the energy and scale gradients are concordant and is lower if they are opposite. The similarity analysis, which is in fair agreement with the previous experiments, is based on the use of the kinetic energy equation, which contains information concerning the third order moments of the velocity fluctuations. The analysis is based on two simplifying hypotheses: first, that the decays of the turbulences being mixed are almost nearly equal (as suggested by the experiments), second, that the pressure-velocity correlation is almost proportional to the convective transport associated to the fluctuations (Yoshizawa, 2002

    Dimensionality influence on passive scalar transport

    Get PDF
    We numerically investigate the advection of a passive scalar through an interface placed inside a decaying shearless turbulent mixing layer. We consider the system in both two and three dimensions. The dimensionality produces a different time scaling of the diffusion, which is faster in the two-dimensional case. Two intermittent fronts are generated at the margins of the mixing layer. During the decay these fronts present a sort of propagation in both the direction of the scalar flow and the opposite direction. In two dimensions, the propagation of the fronts exhibits a significant asymmetry with respect to the initial position of the interface and is deeper for the front merged in the high energy side of the mixing. In three dimensions, the two fronts remain nearly symmetrically placed. Results concerning the scalar spectra exponents are also presente

    Multiscale fluid--particle thermal interaction in isotropic turbulence

    Full text link
    We use direct numerical simulations to investigate the interaction between the temperature field of a fluid and the temperature of small particles suspended in the flow, employing both one and two-way thermal coupling, in a statistically stationary, isotropic turbulent flow. Using statistical analysis, we investigate this variegated interaction at the different scales of the flow. We find that the variance of the fluid temperature gradients decreases as the thermal response time of the suspended particles is increased. The probability density function (PDF) of the fluid temperature gradients scales with its variance, while the PDF of the rate of change of the particle temperature, whose variance is associated with the thermal dissipation due to the particles, does not scale in such a self-similar way. The modification of the fluid temperature field due to the particles is examined by computing the particle concentration and particle heat fluxes conditioned on the magnitude of the local fluid temperature gradient. These statistics highlight that the particles cluster on the fluid temperature fronts, and the important role played by the alignments of the particle velocity and the local fluid temperature gradient. The temperature structure functions, which characterize the temperature fluctuations across the scales of the flow, clearly show that the fluctuations of the fluid temperature increments are monotonically suppressed in the two-way coupled regime as the particle thermal response time is increased. Thermal caustics dominate the particle temperature increments at small scales, that is, particles that come into contact are likely to have very large differences in their temperature. This is caused by the nonlocal thermal dynamics of the particles..

    Philofluid turbulent flow database

    Get PDF
    A set of velocity and passive scalar fields and their statistics coming from direct numerical simulations and large-eddy simulations. The database includes: shearless mixings in two a three dimensions, turbulent channel flow, cavity flow. Username and password to access the netdisks is provided upon request

    Numerical experiments on the intermediate asymptotics of shear-free turbulent transport and diffusion

    Get PDF
    A numerical experiment on the interaction between different decaying homogeneous and isotropic turbulence is described. In the absence of kinetic energy production, the intermediate asymptotics of the turbulent shear-free mixing layer can be observed. The first aim of the experiment is to verify the existence of the intermittency or of the Gaussian asymptotic state in the case of the absence, or weak presence, of a lengthscale gradient. The second aim is to analyse the effects that are due to the difference between the spectral distribution of the interacting turbulence fields, which introduces the presence of the gradient of integral scale into the initial condition. It can be observed that the homogeneity of the integral length across the shearless layer is not a sufficient condition to obtain the Gaussian asymptotic state. In fact, if the macroscale gradient is suppressed by considering turbulence with similar spectra, it is apparent that the intermittency increases with the energy gradient. Furthermore, by independently varying the initial energy level and distribution over the wavenumbers, two turbulence fields can be joined with an initial difference of integral scale either opposite to or concordant with the gradient of the turbulent kinetic energy. It is found that the intermittency and the depth of penetration by the eddies from the high-energy region increase when the energy and lengthscale gradients are concordant and decrease when they are opposite. Therefore, the most efficient process of mixing takes place when the spectra of two mixed fields differ in the lowest wavenumber

    Aerodynamics of a rigid curved kite wing

    Get PDF
    A preliminary numerical study on the aerodynamics of a kite wing for high altitude wind power generators is proposed. Tethered kites are a key element of an innovative wind energy technology, which aims to capture energy from the wind at higher altitudes than conventional wind towers. We present the results obtained from three-dimensional finite volume numerical simulations of the steady air flow past a three-dimensional curved rectangular kite wing (aspect ratio equal to 3.2, Reynolds number equal to 3x10^6). Two angles of incidence -- a standard incidence for the flight of a tethered airfoil (6{\deg}) and an incidence close to the stall (18{\deg}) -- were considered. The simulations were performed by solving the Reynolds Averaged Navier-Stokes flow model using the industrial STAR-CCM+ code. The overall aerodynamic characteristics of the kite wing were determined and compared to the aerodynamic characteristics of the flat rectangular non twisted wing with an identical aspect ratio and section (Clark Y profile). The boundary layer of both the curved and the flat wings was considered to be turbulent throughout. It was observed that the curvature induces only a mild deterioration of the aerodynamics properties. Pressure distributions around different sections along the span are also presented, together with isolines of the average pressure and kinetic energy fields at a few sections across the wing and the wake. Our results indicate that the curvature induces a slower spatial decay of the vorticity in the wake, and in particular, inside the wing tip vortices.Comment: 13 pages, 13 figures. Submitted to "Renewable Energy

    Selective large-eddy simulation of hypersonic flows. Procedure to activate the filtering in unresolved regions only (arXiv:1211.1305, submitted to Computer Physics Communications)

    Get PDF
    A new method for the localization of the regions where the turbulent fluctuations are unresolved is applied to the large-eddy simulation (LES) of a compressible turbulent jet with an initial Mach number equal to 5. The localization method used is called selective LES and is based on the exploitation of a scalar probe function f which represents the magnitude of the stretching-tilting term of the vorticity equation normalized with the enstrophy (Tordella et al. 2007). For a fully developed turbulent field of fluctuations, statistical analysis shows that the probability that f is larger than 2 is almost zero, and, for any given threshold, it is larger if the flow is under-resolved. By computing the spatial field of f in each instantaneous realization of the simulation it is possible to locate the regions where the magnitude of the normalized vortical stretching-tilting is anomalously high. The sub-grid model is then introduced into the governing equations in such regions only. The results of the selective LES simulation are compared with those of a standard LES, where the sub-grid terms are used in the whole domain. The comparison is carried out by assuming as reference field a higher resolution Euler simulation of the same jet. It is shown that the selective LES modifies the dynamic properties of the flow to a lesser extent with respect to the classical LES. In particular, the prediction of the enstrophy distribution and of the energy and density spectra are substantially improve
    • 

    corecore