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Abstract

In the absence of kinetic energy production, we consider that the influ-
ence of the initial conditions is characterized by the presence of an energy
gradient or by the concurrency of an energy and a macroscale gradient
on turbulent transport. Here, we present a similarity analysis that in-
terprets two new results on the subject recently obtained by means of
numerical experiments on shearless mixing (Tordella & Iovieno, 2005). In
short, the two results are: i – The absence of the macroscale gradient is
not a sufficient condition for the setting of the asymptotic Gaussian state
hypothesized by Veeravalli and Warhaft (1989), where, regardless of the
existence of velocity variance distributions, turbulent transport is mainly
diffusive and the intermittency is nearly zero up to moments of order four.
In fact, it was observed that the intermittency increases with the energy
gradient, with a scaling exponent of about 0.29; ii – If the macroscale
gradient is present, referring to the situation where the macroscale gra-
dient is zero but the energy gradient is not, the intermittency is higher
if the energy and scale gradients are concordant and is lower if they are
opposite. The similarity analysis, which is in fair agreement with the
previous experiments, is based on the use of the kinetic energy and the
two-point correlation equations, which contain information on the second
and third order moments of the velocity fluctuations. The analysis is
based on two main hypotheses: first, the decays of the turbulences be-
ing mixed are nearly equal (as suggested by the experiments), second,
the pressure-velocity correlation is almost proportional to the convective
transport associated to fluctuations (Yoshizawa, 2002).
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The dependence of turbulence mixings on the initial conditions has
been considered and documented through single-point statistics, obtained
by means of direct and large eddy numerical simulations (Tordella &
Iovieno, 2005, Iovieno & Tordella, 2002). The simulations were carried
out using of a new technique for the parallel dealised pseudospectral in-
tegration of the Navier-Stokes equations (Iovieno et al., 2001). In all the
shearless mixing experiments a self-similar state appears to exist. The
statistical distributions of orders higher than the second maintain fea-
tures that depend on the initial values of the ratio of energy, E = E1/E2,
of the ratio of macroscale, L = �1/�2, and on the sign of ∇�. Here and
in the following subscript 1 and 2 refer to the high/low energy regions
respectively. Independently of the values of the control parameters and
the concurrency, or lack of it, of the energy and scale gradients, a set of
common properties exists for all the studied mixings. First, the statistical
distributions become self-similar after nearly a decay of three time units.
Second, in the self-similarity region of the decay, the lateral spreading rate
is on averege close to 0.15. Third, the kinetic energy distribution has a
common shape (see, (12)). Fourth, all the mixings – including the mixing
with L = 1 – are very intermittent, as the skewnes S and kurtosis K
distributions show, see fig.s 1b and 2.

To carry out the similarity analysis,we considered the second moment
equations for the velocity fluctuations (u, in the inhomogeneous direction
x, v1, v2 in the plane normal to x),

∂tu2 + ∂xu3 = −2ρ−1∂xpu + 2ρ−1p∂xu − 2εu + ν∂2
xu2 (1)

∂tv2
1 + ∂xv2

1u = 2ρ−1p∂y1v1 − 2εv1 + ν∂2
xv2

1 (2)

∂tv2
2 + ∂xv2

2u = 2ρ−1p∂y2v2 − 2εv2 + ν∂2
xv2

2 (3)

The two mixed turbulences decay in a similar way, as shown by the rical
simulations (Tordella & Iovieno, 2005). Thus, in the decay laws:

E1(t) = A1(t + t0)
−n1 , E2(t) = A2(t + t0)

−n2

the exponents n1, n2 are close each other, which assures the constancy of
E with respect to the time variable. Here, we suppose n1 = n2 = n = 1,
a value which corresponds to Rλ � 1 (Batchelor & Townsend, 1948).

In the absence of energy production, the pressure-velocity correlation
has been shown to be approximately proportional to the convective fluc-
tuation transport (Yoshizawa, 1982, 2002)

−pu = aρ
u3 + 2v2

1u

2
, a ≈ 0.10,

moreover all experiments show no appreciable difference in the second
order moments in the mixing, i.e. u2 � v2

i , so that u3 − v2
1u � 2ρ−1p∂xu

and consequently

−ρ−1pu = αu3, α =
3a

1 + 2a
≈ 0.25. (4)

In this initial value problem, the moment distributions are determined by
the coordinates x, t, and by the energy E and the macroscale � of the two
mixing turbulences. Thus, through dimensional analysis
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uk = E
k
2
1 ϕuk(η; R�1 , ϑ1, E ,L) ∀k, εu = E

3
2
1 �−1

1 ϕεu(η; R�1 , ϑ1, E ,L), (5)

where η = x/Δ(t), Δ(t) is the mixing layer thickness, R�1 = E
1
2
1 (t)�1(t)/ν

is the Reynolds number relevant to the high energy turbulence, ϑ1 =

tE
1
2
1 (t)/�1(t) is the dimensionless time scale of the flow and E = E1(t)/E2(t),

L = �1(t)/�2(t). It should be noticed that, if n = 1, E , L, ϑ1 = n/f(Rλ1 )
and R�1 ∝ t1−n are constantin time. The mixing is then driven by con-
stant scale and energy gradients. By inserting relation (5) in (1), it is
possible to deduce that Δ(t) ∝ �1(t). By putting Δ(t) = �(t), one ob-
tains:

−1

2
η

∂ϕuu

∂η
+

1

f(Rλ1)
(1 − 2α)

∂ϕuuu

∂η
− ν

Af(Rλ1)
2

∂2ϕuu

∂η2
=

= ϕuu − 2

f(Rλ1)
ϕεu (6)

The right hand side of equation (6) is zero in homogeneous turbulence
where decay balances dissipation. As a consequence, this rhs vanishes
when η → ±∞. To get indication of its behaviour within the mixing
layer, we can consider two-point correlation equations. In the absence of
mean velocity, the two-point correlation equations can be derived from
Navier-Stokes equations as

∂

∂t
Bij +

∂

∂xk
Bik|j +

∂

∂rk

(
Bi|kj − Bik|j

)
=

= − ∂

∂xi
Bpj +

∂

∂ri
Bpj − ∂

∂rj
Bip +

+ν

[
∂2

∂xk∂xk
Bij + 2

∂2

∂rk∂rk
Bij − 2

∂2

∂xk∂rk
Bij

]
(7)

where Bij(x, r, t) = ui(x, t)uj(x + r, t), Bpi(x, r, t) = p(x, t)ui(x + r, t)
and Bij|k(x, r, t) = ui(x, t)uj(x, t)uk(x + r, t). Equations (1-3) can be
deduced from (7) with the limit r → 0. In particular, when the cylindrical
symmetry for the correlation distance vector r is used, εu in (1) is given
by the following limit

εu = − lim
r0→0

lim
rx→0

ν

(
∂2

∂r2
0

+
1

r0

∂

∂r0
+

∂2

∂r2
x

)
Buu(x, r0, rx, t)

where Buu(x, r0, rx, t) is the two-point correlation of velocity component u
while rx, r0 are the distance between two points along the mixing direction
and normal to it. When the correlation distance r is zero, Buu is equal to
u2. We note that Buu is a transversal correlation when rx → 0, so that
the following definitions

1

λ2(x, t)
= −[

1

2Buu

∂2Buu

∂2r0
](x,0,0,t) (8)

�(x, t) = 2

∫ ∞

0

Buu(x, r0, 0, t)

Buu(x, 0, 0, t)
dr0
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for Taylor’s and integral scales hold. The similarity form of Buu equivalent
to (5) is

Buu = E
1
2
1 ϕ̂uu(η, ξ0, ξx)

with ξ0 = r0/�(x, t), ξx = rx/�(x, t). For ξx = ξ0 = 0 we have ϕ̂uu = ϕuu.
Relation (8) leads to

1

λ2(x, t)
= − 1

�(x, t)

1

ϕ̂uu(η, 0, 0)
∂2

ξ0 ϕ̂uu(η, 0, 0)

The dissipation εu can then be expressed as

εu = 3ν
E1

�2
∂2

ξ0 ϕ̂uu(η, 0, 0) = E1

(
�

λ

)2

ϕuu.

When this equation is introduced into (5) and similarity expressions for
the scales distributions are introduced, i.e. �(x, t) = �1(t)λI(η), λ(x, t) =
�1(t)λT (η), we get

ϕεu =
3

R�1

λ2
I(η)

λ2
T (η)

ϕuu

This allows to write the right-hand side of equation (6) as

ϕuu − 2

f(Rλ1)
ϕεu = ϕuu

[
1 − 3

f(Rλ1)

1

R�1

λ2
I(η)

λ2
T (η)

]
(9)

In conclusion, the right-hand side of (6) dependes on the ratio between
the Taylor and integral scales through the mixing, that is on the shape of
the two-point correlations. When the shape does not change through the
mixing, ratio λT /λI remains constant. Consequently, it remains equal to
the value it assumes when η → ±∞ where it vanishes. A larger value
of λI/λT reduces the skewness, while a lower value tend to increase the
intermittency. The comparison of the third moment distribution with
experimental data could then give the ratio λT /λI through the mixing.
When mixings without a gradient of interal scale are considered (L = 1),
the previously mentioned experiments (Tordella-Iovieno, 2005) suggest
that the rhs of (6) could be modelled by means of a diffusive term, so
that

2

f(Rλ1)
ϕεu − ϕuu = β

∂2ϕuu

∂η2
(10)

where β is a constant of proportionality; β = 0 corresponds to an hypoth-
esis of local equilibrium.

In the following, by simply writing f instead of f(Rλ1), integration of

(6) leads to the following expression for the skewness, S = ϕuuu/ϕ
3/2
uu

S =
ϕ

− 3
2

uu

(1 − 2α)

[
f

2

∫ η

−∞
η

∂ϕuu

∂η
dη +

(
ν

A1f
− βf

)
∂ϕuu

∂η

]
(11)

By representing the second moments with the fitting curve given by the ex-
perimental distributions (Veeravalli-Warhaft, 1989 and Tordella-Iovieno,
2005)

ϕuu =
1 + E−1

2
− 1 − E−1

2
erf(η) (12)

one obtains
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S =
1 − E−1

√
π

f

4(1 − 2α)

(
1 − 4ν

A1f2
+ 4β

)
e−η2 ×

[
1 + E−1

2
− 1 − E−1

2
erf(η)

]− 3
2

(13)

Figure 1 shows the good agreement of the modelled variance and skewness
distributions (relations 12 and 13) with the experimental data. The inter-
mittency parameter associated to the lateral penetration of the mixing is
compared in fig.2 with the values given by the present similarity law. It
can be observed that the scaling exponent deduced from the experiment
(Tordella & Iovieno, 2005), which is approximately equal to 0.29, is quali-
tatively represented. It should be noticed that such scaling is independent
from the energy-dissipation model (10), because the model coefficient β
does not influence the shape of the skewness distribution (13) and does
not modify the position of the skewness maximum, which appears to be a
function of the energy ratio E only. However, β determines the value of the
maximum of the skewness distribution, and β ≈ 0.08 gives the best fit with
experimental data by Tordella-Iovieno (2005). The other parameters that
appear in figures 1 and 2 are α = 0.25 (see equation 4) and f(Rλ1) = 0.65.
This last has been obtained for Reλ1 = 45 from experimental and direct
numerical simulation data collected by Sreenivasan (1998). The different
penetration observed when L �= 1 could allow to evaluate the right-hand
side of equation (6) and then, through (9), the distribution through the
mixing of the ratio between the integral scale and the Taylor microscale,
which defines the shape of the two-point correlations.
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Figure 1: Normalized energy and skewness distributions; E = 6.7 and L = 1.
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