research

Self-similarity of the turbulent mixing with a constant in time macroscale gradient

Abstract

In the absence of kinetic energy production, we consider that the influence of the initial conditions is characterized by the presence of an energy gradient or by the concurrency of an energy and a macroscale gradient on turbulent transport. Here, we present a similarity analysis that interprets two new results on the subject recently obtained by means of numerical experiments on shearless mixing (Tordella & Iovieno, 2005). In short, the two results are: i -- The absence of the macroscale gradient is not a sufficient condition for the setting of the asymptotic Gaussian state hypothesized by Veeravalli and Warhaft (1989), where, regardless of the existence of velocity variance distributions, turbulent transport is mainly diffusive and the intermittency is nearly zero up to moments of order four. In fact, it was observed that the intermittency increases with the energy gradient, with a scaling exponent of about 0.29; ii -- If the macroscale gradient is present, referring to the situation where the macroscale gradient is zero but the energy gradient is not, the intermittency is higher if the energy and scale gradients are concordant and is lower if they are opposite. The similarity analysis, which is in fair agreement with the previous experiments, is based on the use of the kinetic energy equation, which contains information concerning the third order moments of the velocity fluctuations. The analysis is based on two simplifying hypotheses: first, that the decays of the turbulences being mixed are almost nearly equal (as suggested by the experiments), second, that the pressure-velocity correlation is almost proportional to the convective transport associated to the fluctuations (Yoshizawa, 2002

    Similar works