2,603 research outputs found

    An orientable time of flight detector for cosmic rays

    Full text link
    Cosmic ray studies, in particular UHECR, can be in general supported by a directional, easy deployable, simple and robust detector. The design of this detector is based on the time of flight between two parallel tiles of scintillator, to distinguish particle passing through in opposite directions; by fine time resolution and pretty adjustable acceptance it is possible to select upward(left)/downward(right) cosmic rays. It has been developed for an array of detectors to measure upward Ï„\tau from Earth-Skimming neutrino events with energy above 108GeV10^8 GeV. The properties and performances of the detector are discussed. Test results from a high noise environment are presented.Comment: 4 pages, Nuclear Instruments and methods, Proceedings Ricap0

    Test results of a prototype designed to detect horizontal cosmic ray flux

    Full text link
    In this paper we report test results from a prototype designed to detect muons from horizontal air shower at large zenith angle, 860<Θ<93086^{0}<\Theta<93^{0}. To detect horizontal tracks and their directions we select them according the muon vertical equivalent charge and we measure the time of flight with a time resolution of 800 ps. Several measurements are collected at different zenith angles. The background studies performed with two modules show that the main source is due to tracks crossing the module at the same time. The upper limit of background flux for a single twin module is estimated to be 10−9cm−210^{-9} cm^{-2} s−1s^{-1} sr−1(90sr^{-1} (90%CL). We estimated the size of the surface array necessary to detect the shower flux of the order of 10−9cm−210^{-9} cm^{-2} yr−1yr^{-1} sr−1sr^{-1} if originated by Tau Air-Showers secondaries of GZK neutrino Tau below the horizons.Comment: 12 pages, 13 figure

    Electron muon identification by atmospheric shower and electron beam in a new concept of an EAS detector

    Full text link
    We present results demonstrating the time resolution and μ\mu/e separation capabilities with a new concept of an EAS detector capable for measurements of cosmic rays arriving with large zenith angles. This kind of detector has been designed to be a part of a large area (several square kilometers) surface array designed to measure Ultra High Energy (10-200 PeV) τ\tau neutrinos using the Earth-skimming technique. A criteria to identify electron-gammas is also shown and the particle identification capability is tested by measurements in coincidence with the KASKADE-GRANDE experiment in Karlsruhe, Germany.Comment: accepted by Astrophysical Journal on January 12 2015, 16 pages 3 Figure

    Centralized vs Decentralized Markets in the Laboratory: The Role of Connectivity

    Get PDF
    This paper compares the performance of centralized and decentralized markets experimentally. We constrain trading exchanges to happen on an exogenously predetermined network, representing the trading relationships in markets with differing levels of connectivity. Our experimental results show that, despite having lower trading volumes, decentralized markets are generally not less efficient. Although information can propagate quicker through highly connected markets, we show that higher connectivity also induces informed traders to trade faster and exploit further their information advantages before the information becomes fully incorporated into prices. This not only reduces market efficiency, but it increases wealth inequality. We show that, in more connected markets, informed traders trade not only relatively quicker, but also more, in the right direction, despite not doing it at better prices

    Mathematical formulations for scheduling jobs on identical parallel machines with family setup times and total weighted completion time minimization

    Get PDF
    This paper addresses the parallel machine scheduling problem with family dependent setup times and total weighted completion time minimization. In this problem, when two jobs j and k are scheduled consecutively on the same machine, a setup time is performed between the finishing time of j and the starting time of k if and only if j and k belong to different families. The problem is strongly NP-hard and is commonly addressed in the literature by heuristic approaches and by branch-and-bound algorithms. Achieving proven optimal solution is a challenging task even for small size instances. Our contribution is to introduce five novel mixed integer linear programs based on concepts derived from one-commodity, arc-flow and set covering formulations. Numerical experiments on more than 13000 benchmark instances show that one of the arc-flow models and the set covering model are quite efficient, as they provide on average better solutions than state-of-the-art approaches, with shorter computation times, and solve to proven optimality a large number of open instances from the literature

    Off-Equilibrium Dynamics of a 4D Spin Glass with Asymmetric Couplings

    Full text link
    We study the off-equilibrium dynamics of the Edwards-Anderson spin glass in four dimensions under the influence of a non-hamiltonian perturbation. We find that for small asymmetry the model behaves as the hamiltonian one, while for large asymmetry the behaviour of the model can be well described by an interrupted aging scenario. The autocorrelation function C(t_w+\tau,t_w) scales as \tau/t_w^\beta, with \beta a function of the asymmetry. For very long waiting times the previous regime crosses over to a time translational invariant regime (TTI) with stretched exponential relaxation. The model does not show signs of reaching a TTI regime for weak asymmetry, but in the aging regime the exponent \beta is always different from one, showing a non trivial aging scenario.Comment: Latex, 12 pages, 9 figure

    A quantitative model of trading and price formation in financial markets

    Full text link
    We use standard physics techniques to model trading and price formation in a market under the assumption that order arrival and cancellations are Poisson random processes. This model makes testable predictions for the most basic properties of a market, such as the diffusion rate of prices, which is the standard measure of financial risk, and the spread and price impact functions, which are the main determinants of transaction cost. Guided by dimensional analysis, simulation, and mean field theory, we find scaling relations in terms of order flow rates. We show that even under completely random order flow the need to store supply and demand to facilitate trading induces anomalous diffusion and temporal structure in prices.Comment: 5 pages, 4 figure
    • …
    corecore