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Abstract

We propose a multi-agent approach to compare the effectiveness of
macro-prudential capital requirements, where banks are embedded in an
artificial macroeconomy. Capital requirements are derived from systemic-
risk metrics that reflect both the vulnerability or impact of financial in-
stitutions. Our objective is to explore how systemic-risk measures could
be translated in capital requirements and test them in a comprehensive
framework. Based on our counterfactual scenarios, we find that macro-
prudential capital requirements can mitigate systemic risk, but there is
a trade-off between market- and balance-sheet-based policies in terms of
banks’ losses and credit supply.

This is a preliminary draft. Please do not cite or distribute without
permission of the authors.
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1 Introduction

The concept of systemic risk (SR) is relatively recent in economic and financial
literature. The first appearance in scientific articles dates back to the early
’90s, even if citations reveal that most of these contributions have been revived
after 2008, when the term regained strength with the crisis. Kaufman and Scott
(2003, p. 371) provide a general definition: “Systemic risk refers to the risk
or probability of breakdowns in an entire system, as opposed to breakdowns in
individual parts or components, and is evidenced by comovements (correlation)
among most or all the parts.”

Macroprudential policies are the instrument through which regulators could
mitigate systemic risk. They should be viewed as complementary to micro-
prudential policies and be designed to improve the resistance of the whole fi-
nancial system to unforeseen events. However, such policies are hard to imple-
ment, inter alia because they should be built on a reliable measure of systemic
risk: it is unclear which metric performs better and under what circumstances.
The task is more intricate given that systemic events are observed infrequently,
as a banking crisis is observed on average every 35 years for OECD countries
(Danielsson et al., 2016).

Regulators require globally systemically important banks (G-SIBs) to set
aside enough capital to cover unexpected losses and keep themselves solvent in
a crisis. G-SIBs’ surcharges have been in the spotlight in the financial litera-
ture with some studies suggesting they are inadequate to prevent the spread of
systemic crisis. In this article we explore the effectiveness of capital surcharges
derived from different systemic risk measures. By assuming that banks adopt
different capital rules within a multi-agent macro-economic model, we quantify
the impact of such policies in a stress-test scenario-based analysis.

Many methods to measure systemic risk have been proposed so far, but there
is no consensus among scholars on which is most appropriate. We consider
two alternative classes, namely market-based and balance-sheet approaches. A
further distinction between them is what they measure: vulnerability or impact.
Vulnerability focuses on the effect of a systemic event on the capital of banks,
while impact captures the losses produced by the distress of banks on the rest
of the financial system.

The first measure of vulnerability is based on LRMES (Long Run Marginal
Expected Shortfall) (Acharya et al., 2012), which contributes to compute SRISK.
The second is derived from a stress test based on DebtRank, in such a way to
obtain an expected shortfall on individual vulnerabilities. The indicators for im-
pact are ∆CoV aR (Adrian and Brunnermeier, 2016) and DebtRank in strict
sense.1

Counterfactual policy experiments are conducted on an agent-based model
of the economy based on Gurgone et al. (2018). The original model is expanded
to allow banks to employ systemic-risk measures to determine their capital re-

1The DebtRank framework provides both measures of vulnerability and impacts. How-
ever the term “DebtRank” specifically refers to the systemic impact of banks in its original
formulation. For further details see Battiston et al. (2016)
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quirements. In the first set of experiments we assume that capital requirements
are set on the basis of vulnerability metrics, so that more fragile banks are re-
quired to hold a proper equity capital. However, this might not be satisfactory,
as it does not operate on systemic impact of banks. Hence in the second set of
experiments capital requirements depend on the impact of banks on the system,
or the extent of externalities they produce in case of default.

We find that putting this kind of macroprudential policy in place is preferable
to than not to have it, as systemic-capital requirements are able to stabilize the
economy. Moreover, market and balance-sheet policies differ in some aspects:
the former are more robust as their ranks are less volatile over time, but balance-
sheet measures are better to capture the build-up of systemic risk. We also find
a trade-off between the two sets of measures in terms of banks’ losses and lending
capacity.

This paper is the first attempt to (i) suggest how to incorporate hetero-
geneous systemic-risk metrics into banks’ capital requirements; (ii) compare
market-based measures with balance-sheet measures of systemic risk, both from
the perspective of vulnerability of single institutions and the individual impacts
on the financial system; (iii) another divergence from the existing literature is
the method of assessment. Our analysis is performed by means of simulated
data, generated by a multi-agents model, rather than empirically observed data
that, given the rare occurrence of systemic crisis, are scant. Our simulated
economy produces data on returns on equities and at the same time includes
a network structure of interlocked balance sheets, thus it allows for a double
comparison.

The paper is organized as follows: Section 2 presents the related literature.
Section 3 describes the modelling framework, distress dynamics, systemic-risk
measures and macro-prudential policies. Section 4 goes through the results of
the simulations and the policy experiments. Conclusions are in Section 5.

2 Related literature

Several studies have compared systemic risk measures so far. Part of the litera-
ture aims to compare different measures of systemic risk by means of economet-
ric methods. Benoit et al. (2013) provide a theoretical and an empirical compar-
ison of three market-based measures of systemic risk, namely MES, SRISK and
∆CoV aR. They find that there is no measure able to fully account for multiple
aspects of SR, but SRISK is fairly good for describing both the too-big-to-fail
and too-interconnected-to-fail dimensions. Kleinow et al. (2017) empirically
compare four widespread measures of systemic risk, namely MES, Co-Risk,
∆CoV aR and LTD using data on US financial institutions. Their estimates
point out that the four metrics are not consistent with each other over time,
hence it is not possible to fully rely on a single measure. Rodŕıguez-Moreno and
Peña (2013) consider six measures of systemic risk using data from stock, credit
and derivative markets. They quantitatively evaluate such metrics through a
“horse race”, exploiting a sample composed of the biggest European and US
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banks. Their results favour SR measures based on simple indicators obtained
from credit derivatives and interbank rates, rather than more complex metrics
whose performance is not as satisfactory. Similarly Pankoke (2014) opposes
sophisticated to simple measures of systemic risk and concludes that simple
measures have more explanatory power.

Other studies assume that the regulator is disposed to tolerate a systemic-
wide risk level and aims to reach the most parsimonious feasible capitalization
at the aggregate level. Such objective is formally translated into a constrained
optimization problem, whose solution includes both the unique level of capital
in the banking system and its distribution across banks. Tarashev et al. (2010)
find that if capital surcharges are set in order to equalize individual contribu-
tions to systemic risk, then a lower level of aggregate capital is needed to reach
the system-wide risk objective. Webber and Willison (2011) find that optimal
systemic capital requirements increase in balance sheet size and in the value of
interbank obligations. However, they are also found to be strongly pro-cyclical.

Another set of contributions presents balance-sheet and network approaches
to quantify systemic risk. Battiston et al. (2016) propose a network-based stress
test building on the DebtRank algorithm. The framework is flexible enough to
account for impact and vulnerability of banks, as well as to decompose the trans-
mission of financial distress in various rounds of contagion and to estimate the
distribution of losses. They perform a stress-test on a panel of European banks.
The outcome indicates the importance of including contagion effects (or indirect
effects) in future stress-tests of the financial system, so as not to underestimate
systemic risk. Alter et al. (2014) study a reallocation mechanism of capital
in a model of interbank contagion. They compare systemic risk mitigation ap-
proaches based on risk portfolio models with reallocation rules based on network
centrality metrics and show that allocation rules based on centrality measures
outperform credit risk measures. Gauthier et al. (2010) compare capital allo-
cation rules derived from five different measures of systemic risk by means of a
network-based model of interbank relations applied to a dataset including the
six greatest banks of Canada. They also employ an iterative optimization pro-
cess to solve the optimal allocation of capital surcharges that minimizes total
risk, while keeping constant the total amount of capital to be kept aside. The
adopted framework leads to a reduction of the probability of systemic crises
of about 25%; however, results are sensitive to including derivatives and cross
shareholdings in the data.

Poledna et al. (2017) propose to introduce a tax on individual transactions
that may lead to an increase in systemic risk. The amount of the tax is de-
termined by the marginal contribution of each transaction to systemic risk, as
quantified by the DebtRank methodology. This approach reduces the probabil-
ity of a large-scale cascading event by re-shaping the topology of the interbank
networks. While the tax deters banks from borrowing from systemically im-
portant institutions, it does not alter the efficiency of the financial network,
measured by the overall volume of interbank loans. The scheme is implemented
in a macro-financial agent-based model, and the authors show that capital sur-
charges for G-SIBs could reduce systemic risk, but they would have to be sub-
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stantially larger than those specified in the current Basel III proposal in order
to have a measurable impact. Our framework is similar to Poledna et al. (2017),
but we consider a wider set of systemic risk measures and compare their effec-
tiveness against each other.

3 The model

3.1 Macroeconomic Model

The macroeconomy is based on an amended version of the ABM in Gurgone
et al. (2018). The economy is composed of several types of agents: households,
firms, banks, a government, a central bank and a special agency. The (discrete)
numbers of households, firms and banks are NH , NF , NB respectively.

Interactions take place in different markets: firms and households meet on
markets for goods and for labour, while firms borrow from banks on the credit
market and banks exchange liquidity on the interbank market. The CB buys
government-issued bills on the bond market. The role of the government is to
make transfer payments to the household sector. The governmental budget is
balanced, namely the transfers are funded by taxes while the level of the public
debt is maintained at a steady level. The CB generates liquidity by buying
government bills and providing advances to those banks that require them; it
furthermore holds banks’ reserve deposits in its reserve account. Households
work and and buy consumption goods by spending their disposable income. It
is made up of wage and asset incomes after taxes and transfers. In the labour
market, households are represented by unions in their wage negotiations with
firms, while on the capital market, they own firms and banks, receiving a share
of profits as part of their asset income. Firms borrow from banks in order to pay
their wage bills in advance, hire workers, produce and sell their output on the
goods market. The banking sector provides credit to firms, subject to regulatory
constraints. In each period every bank tries to anticipate its liquidity needs and
accesses the interbank market as a lender or a borrower. If a bank is short of
liquidity, it seeks an advance from the CB.

The special agency was not present in Gurgone et al. (2018). It has been
introduced as a convenient way to model the secondary market for loans. It
acts as a liquidator when banks default or when banks exceed the regulatory
constraint and thus must de-leverage. The assets in its portfolio are then put
on the market and can be purchased by those banks that have a positive credit
supply. Further details about the working of the special agency are described
below.

3.2 Distress dynamics

Banks and firms default if their equity turns negative. Distress propagates
through defaults in the credit and interbank markets and banks’ deposits. The
transmission begins when firms cannot re-pay loans due to a negative outcome in
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the goods market. Shocks propagate from firms to banks, within the interbank
market and from banks to firms.2 The process is illustrated in Fig. 1 and
terminates only when there are no new losses.

firm-bank

bank-bank

bank-firm

Figure 1: Diagram of the distress transmission. The distress is transmitted through the credit
market (firm-bank), the interbank market (bank-bank) and banks’ deposits (bank-firms).

Liquidation of assets The contagion dynamic is enhanced by the forced
liquidation of assets sold by defaulted banks in order to repay creditors. The
role of liquidator is operated by a special agency that buys the assets of bank i
at price p:

pτ = pτ−1

(
1− ∆qi,τ

qt

1

ε

)
(1)

where ∆qi,τ is the quantity of loans that bank i needs to liquidate,3 ε is the
asset price elasticity, qt is the total quantity of loans in period t. Banks that
need liquidity enter the market in a random order represented by the subscript
τ ; we assume that at the end of each period of the simulation, the initial asset
price is set again at p0 = 1. The assets purchased by the agency are then put
on sale before the credit market opens (lending to firms). Banks with positive
net worth and complying with regulatory leverage rate can buy them at their
net present value.

Recovery rates The effective loss on a generic asset Aij owed by j to i is
Aij(0)(1−ϕij(t)), where ϕ is the recovery rate. Each of j’s creditors can recover

ϕij =
Aj
Lj , i.e. the ratio of borrower’s assets (A) to liabilities (L). However, the

nominal value of illiquid assets is not immediately convertible in cash and must

2If the net worth of a bank is negative, it defaults on its liabilities including the deposits
of firms and households.

3Banks first determine their liquidity need, then compute the fair value of their portfolio
loan by loan. Next they determine ∆q taking into account eq. (1). Lastly, they choose which
loans should be liquidated to reach their objective.

The loans for sale are evaluated at their fair market value by discounting cash flows:

Lfvij =
Lij(1 + Srf )(1− ρfj )

rS

where Li,j is the book value of the loan of bank i to firm j, S is the residual maturity, rf is
the interest rate on the loan, ρf is the default probability of firm j, and r is the risk-free rate.
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be first liquidated to compensate creditors. We denote the liquidation value of
the assets of bank j with Aliqj,t , with Aliqj,t ≤ Aj,t. The actual recovery rate can
be written as:

ϕij ≡
Aliqj
Lj

Furthermore, we assume that there is a pecking order of creditors, so that
they are not equal from the viewpoint of bankruptcy law: the most guaranteed
is the central bank, then depositors and finally banks with interbank loans.
For instance, those creditors who claim interbank loans towards the defaulted
bank j recover the part of j’s assets left after the other creditors have been
compensated. The recovery rate on an interbank loan, can be expressed as:

ϕij = max

(
0,
Aliqj −ACBj −Dj

Lj −ACBj −Dj

)
(2)

where ACB are central bank’s loans to j and D are j’s deposits.
It is worth noticing that loss given default is LGD ≡ 1− ϕ, so that the net

worth of creditor i updates as nwBi,t = nwBi,t−1 − LGDij,tI
l
i,t.

3.3 Measuring systemic risk

Before defining systemic risk adjusted capital requirements (SCR) we need to
introduce how we measure SR. We do it along two dimensions, that is the
vulnerability of banks to a systemic crisis and their systemic impact on the
financial sector.

Balance-sheet measures: DebtRank

The DebtRank algorithm can provide both measures of vulnerability and impact
of banks (see Sect. 6.2 for details), that are respectively denoted by DRvul and
DRimp.

Each measure is computed by repeating DebtRank 500 times. In each run
we randomly draw from the distribution of recovery rates, which are extracted
from a vector of data generated by the benchmark model. At the end, we
compute the average out of the 500 realizations after removing the 1st and the
99th percentiles. Further details about the calibration procedure are detailed
in Sect. 6.1.

Individual vulnerabilities produced by the stress test are expressed in terms
of the relative equity loss of each bank at the last step of the algorithm (τ = T )
after we impose a shock on assets.

hi,T ≡
nwBi,T − nwBi,0

nwBi,0
(3)

7



The impact of each bank on the rest of the system is the overall loss in
capital produced by the default of bank i. The values for each institution are
obtained by imposing its default at the beginning of the algorithm.

gi =

Nb∑
j=1

hj,T nwBi,0 (4)

Market-based measures: SRISK and ∆CoVaR

SRISK (Brownlees and Engle, 2012) is a widespread measure of systemic risk
based on the idea that capital shortages in case of a systemic crisis can be
inferred from the tail of the distribution of negative equity returns during normal
days, given that a crisis is a rare event whose data are barely available. Systemic
risk arises when the financial system as a whole is under-capitalized, leading to
externalities for the real sector.

We add SRISK to our model by following the approach in Brownlees and
Engle (2012). The SRISK of a financial firm i is defined as the quantity of
capital needed to re-capitalize it conditional to a systemic crisis:

SRISKi,t = max

[
0,

1

λ
Li −

(
1− 1

λ

)
nwBi,tMESsysi,t+h|t

]
(5)

where Li are i’s liabilities and MESSysi,t+h|t = E
(
ri,t+h|t|r < Ω

)
is the tail

expectation of i’s equity returns conditional on a systemic event that happens
when r is less than a threshold value Ω from t− h to t.

Starting from 50 periods prior the external shock each bank computes its
own SRISK on a time window made of the last 200 periods. The required
information are the individual and market returns. The first are computed as
returns on equity (ROE) of bank i, that correspond to the relative change in
i’s net worth during each step of the simulation.4 The same logic is applied to
obtain market returns, but they are weighted by net worth of each bank.

Another well-known measure of systemic risk is ∆CoV aR, which quanti-
fies the systemic distress conditional to the distress of a specific financial firm,
namely it accounts for the impact of a bank on the financial system.

CoVaR is implicitly defined as the VaR of the financial system (sys) condi-
tional on an event C(ri,t) of institution i:

Pr
[
rsys,t ≤ CoV aRsys|C(ri) | C(ri,t)

]
= α (6)

where r represents ROE and the conditioning event C(ri) corresponds to a
loss of i equal or above to its V ariα level.

4We account the final value of the new worth before a bank is recapitalized, otherwise
returns would be upwards biased by shareholders’ capital.
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∆CoV aR is a statistical measure of tail-dependency between market returns
and individual returns, which is able to capture co-movements of variables in
the tails and account for both spillovers and common exposures. ∆CoV aR is
the part of systemic risk that can be attributed to i: it measures the change in
value at risk of the financial system at α level when the institution i shifts from
its normal state (measured with losses equal to its median Var) to a distressed
state (losses greater or equal to its Var).

∆CoV aRsys|iα = CoV aRsys|ri=V aRi,αα − CoV aRsys|ri=V aRi,0.5α (7)

A flaw of ∆CoV aR is its (at best) contemporaneity with systemic risk: it fails
to capture the build-up of risk over time and suffers of procyclicality. Further-
more, contemporaneous measures lead to the “volatility paradox”(Brunnermeier
and Sannikov, 2014), inducing banks to increase the leverage target when con-
temporaneous measured volatility is low. A workaround would be to substi-
tute contemporaneous with a forward-looking version of ∆CoV aR (Adrian and
Brunnermeier, 2016, p.1725). The latter is obtained by projecting on the regres-
sors of ∆CoV aR their estimated coefficients, where the independent variables
include individual banks’ characteristics and macro-state variables. Neverthe-
less our model lacks of the wide range of variables that can be employed in
empirical works, as a results our measure of forward ∆CoV aR turns out to be
strongly proportional to the V aR of banks, thus failing to capture the build up
of systemic risk.

3.4 Adjusted Capital Requirements

The comparability of policy experiments under different SR indicators requires a
comprehensive definition of systemic risk adjusted capital requirements (SCR).
In all cases capital requirements are expressed in an intuitive way, as SR indexes
are normalized in the interval [0, 1]. Banks must hold a minimum net worth
equal to a fraction of their risk weighted assets (RWA),5 nwBi,t ≥ ψi,tRWAi,t,
where ψ is a parameter determined by SR metrics. If a systemic risk measure
equals 0, then ψ = 1

λ and a bank must have a capital greater or equal than a
standard regulatory threshold, namely nwB ≥ 1

λRWA. When it equals 1, then
ψ = 1 and capital requirements are as strict as possible, so that equity should
equal assets, nwB = RWA.

Banks comply with capital requirements in two ways: (i) if their actual
leverage ratio is below the maximum admitted, they set the loan supply Ls

and interbank supply Is accordingly; (ii) if the actual leverage rate exceeds the
maximum value, they de-leverage by selling the assets in excess to the special
agency.

5For the sake of simplicity we assign a weight equal to 1 to loans to firms and to interbank
lending, while liquidity is assumed to be riskless, hence its weight is 0. Risk weighted assets
of bank i can be expressed as RWAit = 1× (LFit + Ilit) + 0×Rit = LFit + Ilit. Total assets can
be written as Ai,t = RWAi,t +Ri,t.
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Banks supply loans up to a multiple of their net worth (nwB), net of out-
standing loans (L) at the beginning of t, assuming that all the interbank loans
have been settled. The loan supply of bank i is:

Lsi,t ≤
1

ψ
nwBi,t − Li,t (8)

Our unifying procedure to compare systemic capital requirements builds on
the approach of Acharya et al. (2012). Expected capital shortfall (CS) is the
difference between minimum regulatory capital expressed as a fraction 1

λ of risk
weighted assets (RWA) and the book value of equity in case of a crisis. It
is the capital needed to restore capital adequacy ratio to the value set by the
regulator:

CSi,t+τ |t = max

{
0, Et

[
1

λ
RWAi,t+τ − nwBi,t+τ | crisist+tau

]}
= max

{
0, Et

[
1

λ
Li,t+τ −Ri,t+τ | crisist+τ

]
+

−Et
[(

1− 1

λ

)
nwBi,t+τ | crisist+τ

]} (9)

By assumption debt and liquidity are unchanged in case of crisis,6 hence
Et [Li,t+τ −Ri,t| crisist+τ ] = Li,t −Ri,t+τ .

It turns out that

CSi,t+τ |t = max

{
0,

1

λ
(Li,t −Ri,t)− Et

[(
1− 1

λ

)
nwBi,t+τ | crisist+τ

]}
= max

{
0,

1

λ

(
RWAi,t − nwBi,t

)
− Et

[(
1− 1

λ

)
nwBi,t+τ | crisist+τ

]}

(10)

Vulnerability adjusted capital requirements

Adjusted capital requirement based on vulnerability are obtained under the
assumption that the conditional expectation is:

Et
[
nwBi,t+τ | crisist+τ

]
= (1− vuli,t)nwBi,t (11)

where vul = {LRMES, DRvul}.
6In other words we assume that in case of crisis the major change in net worth is derived

from losses on loans while cash flows and liabilities are constant. Even if there were a change
in liabilities, for instance in deposits, the difference L−R remains constant because deposits
and R would be reduced by the same amount.
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LRMES is the Long Run Marginal Expected Shortfall that is used to com-
pute SRISK in Acharya et al. (2012) (see Sect. 6.3). DRvul is the vulnerability
index of financial institutions described in 3.3.

Capital requirements for bank i are then obtained by imposing SRISK =
0, so that it should always maintain a capital buffer great enough to avoid
recapitalization during periods of distress:

nwBi,t ≥
1
λ

1− (1− 1
λ )LRMESi,t

RWAi,t (12)

Impact adjusted capital requirements

We adopt a top-down approach to ensure consistency with the previous rule and
that based on impact. Adjusted capital requirements are defined starting from
the aggregate and then deriving the individual requirements that each bank must
satisfy to reach the aggregate objective. The idea is that banks contribute to
the aggregate expected capital shortage in proportion to their systemic impact.
To this end, we rewrite the expected capital shortage in aggregate terms.

Nb∑
i=1

CSi,t+τ |t =
1

λ

Nb∑
i=1

RWAi,t −
Nb∑
i=1

nwBi,t

+

−Et

(1− 1

λ

) Nb∑
i=1

nwBi,t+τ | crisist+τ

 (13)

We assume that each bank contributes to the expected aggregate capital
shortage proportionally to its impact. To keep internal consistency and to avoid
aggregation issues we also assume that the aggregate capital shortage is the
sum of individual capital shortages values, computed with the same procedure
of Sect. 3.4 (respectively by LRMES and DRvul).

Each bank should contribute to expected capital shortage in proportion to
its systemic importance. That means that the additional capital required for
each bank is

nw+
i,t =

impi,t∑Nb

i=1 impi,t

Nb∑
i=1

CSi,t+τ |t (14)

where imp = {∆CoV aRsys|it , DRimp}.
Hence the target level of capital for bank i is given by the minimum regula-

tory level of capital plus the additional capital:

nwtagi,t =
1

λ
RWAi,t + nw+

i,t (15)

A rule consistent with those descending from vulnerability is:
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nwtagi,t ≥
1
λ

1− (1− 1
λ )ζi

RWAi,t (16)

with ζi =
nw+

i,t

(1− 1
λ )(

1
λRWAi,t+nw

+
i,t)

7

4 Results

This section presents the results of our simulations and the policy experiments,
whose aim is to show what would happen if measures of systemic risk were
employed to determine SCR of banks. We compare the benchmark scenario,
where all banks are subject to the same fixed regulatory ratio λmax = 0.08, to
those where SCR are derived from macroprudential measures of vulnerability
or impact of financial institutions, as described in Section 3.4. We run a set
of 100 Monte Carlo simulations for each scenario under different seeds of the
pseudo-random numbers generator.

t=0

transient

turn on SCR

lending boom

fiscal shock

t=450

Figure 2: Timeline of the simulations.

The simulations are based on a variant of the macroeconomic model in Gur-
gone et al. (2018) in which the wage-price dynamics is dampened by setting the
wage rate constant, so that business-cycle fluctuations are eliminated and the
model converges to a quasi-steady-state after a transient period. Moreover, we
supply to the lack of fluctuations of credit by simulating a lending boom, that is
increasing the credit demand of firms in the 50 periods before an external shock.
It increases the exposures of banks and contributes to the build-up of the risk.
At the beginning of the lending boom stage we turn on systemic-capital require-
ments, so that the macroprudential regulation is binding. We finally impose a
fiscal-shock for 10 periods that consists in a progressive reduction of transfers
to the household sector. The purpose of the shock is to reduce the disposable
income of households, that in turn affects consumption and firms’ profits. Firms
with negative equity then cannot repay their debts to the banking sector, thus
the initial shock triggers a series of losses through the interlocked balance sheets
of agents. At S = shock, transfers are reduced by 20% and then by an addi-
tional 5% per period with respect to the period before the shock (S− 1). Fig. 2
summarizes what happens during each simulation.

A snapshot of the behaviour of SR measures over time is shown in Section 4.1.
Autocorrelation is analysed in Section 4.2, finally empirical distributions arising
from the simulations are presented in Section 4.3.

7If nw+
i,t = 0 ⇒ ζi,t = 0 and nwtagi,t = 1

λ
RWAi,t. Moreover we assume that ζ ∈ [0, 1], so

that banks must hold at most an amount of capital equal to their assets.
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4.1 SR measures over time

The next lines provide a qualitative analysis of market and balance-sheet based
metrics to observe their behaviour on the periods over the shock.

Fig.s 3 and 4 depict the measured value of systemic risk at different times.
It is worth to note that SCR are not active in this context, but we show the
values of systemic risk as it is measured by the set of indicators described in
3.3.

Market based measures are in Fig. 3, where vulnerability (LRMES) is on
the horizontal axis and the vertical axis reports impact (∆CoVaR). In Fig. 4
vulnerability and impact are measured respectively by DR-vul and DR-imp.
The size of the circles represent the leverage rate of banks (loans to equity), and
colour reflects equity.

In Fig. 3 banks tend to move towards the right part of the graph on the
horizontal axis as time approaches to t = 400, but observed impacts are low.
∆CoVaR remains near 0 until the shock turns towards the end. During the
next periods SR metrics are more heterogeneous, but leverage and net worth
are far lower in the aftermath of the crisis. A different picture of systemic risk
is provided by Fig. 4, where the impact of bank measured by DR-imp stays
high and rather constant until t = 405. Vulnerability moves slowly rightwards
until t = 400, when almost all banks have non-zero values. A large number of
banks is systemic from the viewpoint of impact, but their potential could be
realized only if they become vulnerable and suffer losses. After t = 10, balance-
sheet based measures shift towards the left-lower corner, meaning that banks
are neither vulnerable or dangerous because there is no more capital to be lost.

There are two remarkable differences between market and balance-sheet
based metrics. First let’s look at the time evolution: market-based indexes move
slowly and the larger movements are observed only after the shock at t = 400.
They are quite stable over time and show high persistence, although ∆CoVaR is
pro-cyclical and turns out to be ineffective as an early warning signal to predict
the crisis. Their value does not decline after the end of the shock. Balance-
sheet indexes offer a better dynamical representation of systemic risk, that is
high impacts and vulnerabilities before the crisis but declining after. Second,
the size and the leverages of banks are differently associated to systemic risk in
each set of measures. In particular, all leveraged institutions are represented in
the right part of the graphs in the periods before the crisis by DebtRank. This
is not the case for market-based measures and identifies leveraged banks as the
most vulnerable and in some cases also high-impact.

We can conclude that market based metrics offer a nearly-static but robust
representation of the evolution of systemic risk as banks’ ranking are more
autocorrelated (see Sect 4.2) than in DebtRank. At the opposite, balance-sheet
based measures seem to better reflect the evolution of risk, but display more
volatility as they are sensible to small changes in the network of exposures.
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Figure 3: Market based SR measures over time. Circles’ size represents assets to equity ratio,
colour is the normalized equity.
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Figure 4: Balance-sheet based SR measures over time. Circles’ size represents assets to equity
ratio, colour is the normalized equity.

4.2 Rank correlation

A desirable property of SR measures would be to be stable over time, so that the
ranking of systemically important financial institutions has no high variability
and identifies the same set of subjects in a given time span. We study the
auto-correlation of SR metrics to understand how stable they are.

We consider a measure of rank correlation, Kendall’s tau (τk), which is a
non-parametric measure of correlation between pairs of ranked variables with
values between −1 and 1. If two variables are perfectly correlated τk = 1,
otherwise if there is no correlation at all τk = 0.
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τk =
C −D

n(n− 1)/2

where C and D are the total number of concordant and discordant pairs and
n is the sample size. Moreover when two variables are statistical independent, a
z statistics built on τk tends to distribute as a standard normal, therefore it can
be tested the null of no correlation versus the alternative of non-zero correlation.

We compute τk between the rank of SR measures of each bank and its
lagged values. Results are reported in Tab. 1. When market-based measures
are considered, the ranking has a high and persistent autocorrelation. On the
other hand balance-sheet based measures are autocorrelated to a lower extent.
The difference could be explained in terms of construction, as market-based
measures are obtained from conditional variances (or conditional VaR), which
in turn are estimated through a TGARCH model, where conditional variances
are assumed to follow an autoregressive process (see Section 6.3). Conversely,
balance-sheet based measures do not assume any dependence on past values,
rather they depend on the network structure and credit-debt relationships, so
that the outcome of the DebtRank algorithm might change as a result of small
variations in configuration of the network.

Kendall’s tau

Lags

SR metric +1 +5 +10 +15

DR-vul 0.150 0.058 0.027 0.016
(0.620) (0.800) (0.940) (0.900)

LRMES 0.646 0.286 0.086 -0.022
(0.020) (0.280) (0.640) (0.720)

DR-imp 0.056 0.028 -0.004 0.004
(0.800) (0.900) (0.940) (0.980)

∆CoV aR 0.543 0.151 0.073 0.002
(0.000) (0.560) (0.820) (0.800)

Table 1: Kendall’s correlation coefficients. Reported statistics refers to the average of τk

computed for each bank. The share of p-values exceeding 0.05 are reported in parenthesis.

.

4.3 Policy Experiments

We present here the results of the policy experiments from 100 Monte-Carlo
simulations for each scenario, in which SCR are activated. The artificial data
considered in the graphs refer to periods 350-410, namely those following the
credit boom and the shock. We cleaned the data to remove the outliers by
trimming the observations above (below) the third (first) quartile plus (minus)
1.5 times the interquartile range.

Fig.s 5-9 are boxplots comparing the effects of SCR on selected variables.8

8The red line represents the sample median, the blue lines below and above the median
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Systemic capital requirements succeed in reducing the leverage rate in the econ-
omy (Fig. 5), however, this comes at the cost of reduced lending capacity of
banks. They also contain the losses of banks (except ∆CoVaR), as shown in
Figs. 6 and 7. Balance-sheet based measures do a better job in limiting the
losses of banks from the firm sector, while market-based measures are more
effective on interbank losses and further rounds of contagion. The difference
could be explained in terms of reduced lending on the interbank market: as
balance-sheet measures impose stricter capital requirements before the shock
(compare Fig.s 3 and 4), banks reduce lending to firms and interbank fund-
ing. On one hand, this results in a reduction of credit risk and losses inflicted
by firms. On the other, borrower on the interbank market should turn to the
lending facility of the central bank. By borrowing at an high interest rate they
reduce their profitability and equities and thus increase the probability to be
insolvent on interbank loans (see defaults in Fig. 8). This result suggests to as-
sign to short-term interbank funding a lower weight compared to loans to firms
in risk weighted assets. The worsening of rationing on the interbank market
could lead to undesirable outcomes, that is increased cost of funds or regulatory
arbitrage. Finally, Fig. 9 illustrates the losses in the firm sector. Similarly to
above, balance-sheet-measures limit the exposures of firms to banks but worsen
the defaults of banks, which spill-over into the firm sector.

By comparing vulnerability and impact based policies it does not result a
notable difference, even if general measures based on vulnerability are slightly
better to reduce the right skewness of the empirical distributions. This descends
from the construction of impact-based capital requirements, that assign the
expected capital loss induced by each bank top-down. In other words, the
capital required by each institution is a function of the aggregate expected
capital shortfall computed by metrics based on vulnerability. In this sense,
the mapping of systemic-risk measures to capital requirements produce better
results for vulnerability.

are the first and third quartiles of the sample. The black lines above and below the box are
the whiskers, which extend from the nearest quartile to 1.5 times the interquantile range.
Observations above (below) the whiskers are outliers represented by dots. Notches display a
confidence interval above and below the median

median ± 1.57×
Inter Quantile Range

√
n

If the notches of a pair of boxplots do not overlap, we can reject the null that the medians
come from the same population with 95% confidence, namely their difference is statistically
significant (McGill et al., 1978).
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Figure 5: Average leverage ratio per period of banks (exposures/equity) and firms
(debt/equity).
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Figure 6: Average losses of banks per period. Total losses (top-left), losses produced by
insolvent firms (top-right), losses produced by insolvent banks on interbank lending (bottom-
left), losses produced by second-round (and further) contagion.

0

5

10

15

lo
g

10-3Losses to total exposures

0

0.005

0.01

0.015

0.02

lo
g

Losses to loans

0

0.01

0.02

0.03

0.04

lo
g

Losses to ib loans

Figure 7: Average losses to exposures of banks per period. Losses to total exposure (left),
losses to firms’ loans (middle), losses to interbank loans (right).
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Figure 9: Average losses of firms per period. Total losses produced on the goods market and
on deposits (left), and losses produced on deposits by banks insolvencies (right).

5 Concluding remarks

We presented a policy experiment built on a macro-agent-based model as a
methodology to compare a set of lender-targeted macro-prudential rules in which
banks are subject to capital requirements built on systemic risk measures. Four
metrics are considered: the first set is composed by two market-based measures
(LRMES and ∆CoVaR), while the second one includes balance-sheet-based
measures (DR-vul and DR-imp). Each set contains a metric for vulnerabil-
ity, which states how much a financial institution is systemically vulnerable to
an adverse shock, and one measure for impact, which accounts for the effects
of distress of single banks on the financial system. Capital requirements are
obtained so that required capital is proportional to each bank’s expected (or
induced) capital shortage, which in turn depend on the SR measures.

In Section 4 we qualitatively and quantitatively analysed and compared
macroprudential rules. We find that balance-sheet-based measures are more
sensible to the build-up of systemic risk, conversely they are much more volatile
than their market-based counterparts. Moreover ∆CoV aR turns out to be pro-
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cyclical, that is it provides a measure of the systemic importance of banks only
after a crisis, hence it is unable to anticipate the extent to which a bank can be
systemic. Finally, we compared the empirical distributions of selected variables
generated by the ABM. We find a trade-off between the two set of measures:
balance-sheet metrics are better at reducing the risk arising from the exposures
to firms, but are worse with respect to interbank contagion. This is because
capital requirements based on DebtRank turn out to be tighter than their alter-
natives: they reduce the exposures and the losses of banks at the cost of limiting
banks’ and interbank lending.

The mapping from SR metrics to capital requirements is central to under-
stand our results: alternative measures of systemic risk might be different for the
same financial institution, therefore they could determine disparate behaviours
about de-leveraging and credit supply. Even if the values of alternative mea-
sures have the same distribution, they could be associated heterogeneously to
banks. So, a vulnerability index of 1 could translate in antipodean behaviours
for a small unleveraged bank and a large leveraged one. This explains why we
observe a higher credit rationing under balance-sheet based policies: DebtRank
accounts for banks’ interconnections in the credit and interbank market. In
other words, it constraints more those banks with the greatest degrees in the
network, but by doing so it limits their lending capacity (the credit market and
the interbank market are modelled by static networks). Ultimately, this results
in the association of high values of vulnerability to banks that are leveraged
because they have multiple connection with the firms and/or banks, but do-
ing so implies to affect the overall credit supply in the economy. The same
is not happening with market-based-measures because they do not account for
the structure of interlocked balance sheets but are derived from market indexes
based on observed returns.

The last remark is about calibration. The policy experiments build on the
idea to compare the sets of measures on a common ground, which translates in
a calibration of DebtRank based on the assumption underlying LRMES, where
a systemic crisis correspond to a decline of market returns of 40% in six months.
Still, this might not work well for DebtRank. An alternative comparison could
be conducted based on a calibration of systemic-risk metrics which is optimal
for each of them. For instance, the shock to firms’ assets in DebtRank (or
threshold value of market decline in LRMES) could be determined based on
the minimization of a loss function based on the realization of the economic
variables in the model.

The issue of calibration could be studied in future research, together with
other shortcomings. For instance the derivation of SCR from indicators of im-
pact could be improved or combined with vulnerability. Another extension
regards the analysis of systemic risk in a model capable to generate endogenous
business cycles. This would permit to examine the time-dimension and the pro-
cyclicality of macroprudential policy. Furthermore, our concept of systemic risk
is mainly related to banks. Although firms are also included in the financial net-
work, measures of vulnerability and impact are only referred to banks. Firms
might be systemic as well, at least from the point of view of credit-debt relation-
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ships with banks. For this reasons macro-prudential polices should keep into
account the financial network as a whole without excluding any of the relevant
agents.
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6 Appendix

6.1 Calibration of DebtRank
In general, our approach is similar to that adopted in Battiston et al. (2016), but we have
adapted the algorithm to account for the structure of the underlying macro-model, as described
in greater detail in Sect. 6.2. Given that the macro-environment includes firms, we first
impose the shock on firms’ assets to compute the systemic vulnerability index DRvul. Next
the induced distress transmits linearly to the assets of creditors (i.e. banks). This allows to
capture the specific dynamics of the distress process.

Our calibration strategy aims to compare market and balance-sheet based measures on a
common ground. To do so, we apply to DebtRank the definition of systemic crisis employed in
the SRISK framework. SRISK is computed by LRMES, which represents the expected equity
loss of a bank in case of a systemic event. This is represented by a decline of market returns
of 40% over the next six months. We run 100 Monte-Carlo simulations of the macro-model,
record the market ROE and the firms’ losses to equity ratio. Then we compute the change in
market ROE over the past 180 periods (approximately six months). Finally we construct a
vector of the losses of firms to their equities in those periods where the ROE declined at least
by −40%.

To compute vulnerabilities by DebtRank we randomly sample from the vector of the
empirical distribution of losses/equity at each repetition of the algorithm. Finally we obtain
DRvul for each bank as an average of the realized values, after removing the 1st and the 99th
percentiles.

Figure 10: (Top-left) rescaled market ROE from a random Monte-Carlo run. (Top-right)
Six month chance of market ROE. The red dashed line represents the threshold of −40%.
(Bottom-left) Histogram of the square root of the losses/loans ratio of firms, where values
equal to zero are ignored. (Bottom-right) Histogram of the losses/loans ratio of firms.

6.2 DebtRank
We employ a differential version of the DebtRank algorithm in order to provide a network
measure of systemic risk. Differential DebtRank (Bardoscia et al., 2015) is a generalization of
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the original DebtRank (Battiston et al., 2012) which improves the latter by allowing agents
to transmit distress more than once. Moreover our formulation has similarities with Battiston
et al. (2016), where it is assumed a sequential process of distress propagation. In our case we
first impose an external shock on firms’ assets, then we sequentially account for the propa-
gation to the banking sector through insolvencies on loans, to the interbank network and to
firms’ deposits.

The relative equity loss for banks (h) and firms (f) is defined as the change in their net
worth (respectively nwB , and nwF ) from τ = 0 to τ with respect to their initial net worth.
In particular the initial relative equity loss of firms happens at τ = 1 due to an external shock
on deposits:

hi(τ) = min

[
nwBi (0)− nwBi (τ)

nwBi (0)

]

fj(τ) = min

[
nwFj (0)− nwFj (τ)

nwFj (0)

]

The dynamics of the relative equity loss in firms and banks sectors is described by the
sequence:

• Shock on deposits in the firms sector:

fj(1) = min

[
1,

DFj (0)−DFj (1)

nwFj (0)

]
= min

[
1,

lossj(1)

nwFj (0)

]
• Banks’ losses on firms’ loans:

hi(τ + 1) = min

1, hi(τ) +
∑
j∈J

Λfbij (1− ϕloanj )(pj(τ)− pj(τ − 1))


• Banks’ losses on interbank loans:

hi(τ + 1) = min

1, hi(τ) +
∑
k∈K

Λbbik(1− ϕibk )(pk(τ)− pk(τ − 1))


• Firms’ losses on deposits:

fj(τ + 1) = min
[
1, fj(τ) + Λfbjk(1− ϕdepk )(pk(τ)− pk(τ − 1))

]
Where pj is the default probability of debtor j and ϕi, i = {loan, ib, dep} is the recovery

rate on loans, interbank loans and deposits. Recovery rates on each kind of assets are randomly
extracted from a vector of observations generated by the benchmark model.

For the sake of simplicity we can define it as linear in fj (hk for banks), so that pj(τ) =
h(τ) 9. Λ is the exposure matrix that represents credit/debt relationships in the firms-banks

9In a more realistic setting the default probability could be written as

pj(τ) = fj(τ) exp(α(hj(τ))− 1)

where if α = 0 it corresponds to the linear DebtRank, while if α → ∞ it is the Furfine
algorithm (Bardoscia et al., 2016). Moreover we can assume that deposits are not marked-
to-market, but they respond to the Furfine algorithm, in other words the distress propagates
only in case of default of the debtor. For deposits it might be reasonable to assume

pDj (τ − 1) =

{
1 if hk(τ − 1) = 1

0 otherwise
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network. It is written as a block matrix, where Λbb refers to the interbank market, Λbf refers
to deposits, Λfb refers to firm loans and Λff is a matrix of zeros.

Λ =

[
Λbb Λbf

Λfb Λff

]
The exposure matrix Λ represents potential losses over equity related to each asset at

the beginning of the cycle, where each element has the value of assets at the numerator and
the denominator is the net worth of the related creditor. in our specification firms have no
intra-sector links, hence Λff = 0. In case there are Nb = 2 banks and Nf = 3 firms, the
matrix Λ looks like:

Λ =



0 Ib12
nwB2

D13

nwF1

D12

nwF2

D15

nwF3

Ib21
nwB1

0 D23

nwF1

D24

nwF2

D25

nwF3

L
f
31

nwB1

L
f
32

nwB2
0 0 0

L
f
41

nwB1

L
f
42

nwB2
0 0 0

L
f
51

nwB1

L
f
52

nwB2
0 0 0



6.3 SRISK
SRISK (Brownlees and Engle, 2012) is a widespread measure of systemic risk based on the
idea that the latter arises when the financial system as a whole is under-capitalized, leading
to externalities for the real sector. To apply the measure to our model we follow the approach
of Brownlees and Engle (2012). The SRISK of a financial firm i is defined as the quantity of
capital needed to re-capitalize a bank conditional to a systemic crisis

SRISKi,t = min

[
0,

1

λ
Li −

(
1−

1

λ

)
nwBi,t(1−MESSys

i,t+h|t)

]
where MESSys

i,t+h|t = E
(
ri,t+h|t|r < Ω

)
is the tail expectation of the firm equity returns

conditional on a systemic event, that happens when i’s equity returns r from t − h to t are
less than a threshold value Ω.

Acharya et al. (2012) propose to approximate MESSys with its Long Run Marginal
Expected Shortfall (LRMES), defined as a

LRMESi,t = 1− exp{−18MES2%
i,t }

LRMES represents the expected loss on equity value in case the market return drops by 40%
over the next six months. Such approximation is obtained through extreme value theory, by
means of the value of MES that would be if the daily market return drops by −2%.

The bivariate process driving firms’ (ri) and market (rm) returns is

rm,t = σm,tεm,t

rm,t = σi,tρi,tεm,t + σi,t

√
1− ρ2

i,tξi, t

(ξi,t, εm,t) ∼ F

where σm,t is the conditional standard deviation of market returns, σi,t is the conditional
standard deviation of firms’ returns, ρi,t is the conditional market/firm correlation and ε and
ξ are i.i.d. shocks with unit variance and zero covariance ε and ξ are i.i.d. shocks with unit
variance and zero covariance.
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MES2% is expressed setting Ω = −2%:

MESΩ
i,t−1 = σi,tρi,tEt−1

(
εm,t|εm,t <

Ω

σm,t

)
+ σit

√
1− ρ2

i,tEt−1

(
ξi,t|εm,t <

Ω

σm,t

)
Conditional variances σ2

m,t, σ
2
i,t are modelled with a TGARCH model from the GARCH

family (Rabemananjara and Zakoian, 1993). Such specification captures the tendency of
volatility to increase more when there are bad news:

σ2
m,t = ωm + αmr

2
m,t−1 + γmr

2
m,t−1I

−
m,t−1 + βmσ

2
m,t−1

σ2
i,t = ωi + αir

2
i,t−1 + γir

2
i,t−1I

−
i,t−1 + βiσ

2
i,t−1

I−m,t = 1 if rm,t < 0 and I−i,t = 1 when ri,t < 0, 0 otherwise.

Conditional correlation ρ is estimated by means of a symmetric DCC model (Engle, 2002).
Moreover to obtain the MES it is necessary to estimate tail expectations. This is performed
with a non-parametric kernel estimation method (see Brownlees and Engle, 2012).

Open-source Matlab code is available thanks to Sylvain Benoit, and Gilbert Colletaz,
Christophe Hurlin, who developed it in Benoit et al. (2013).

6.4 ∆CoVaR
Following Adrian and Brunnermeier (2016) ∆CoV aR is estimated through a quantile regres-
sion (Koenker and Bassett Jr (1978)) on the αth quantile, where rsys and ri are respectively
market-wide returns on equity and bank i’s returns. Quantile regression estimates the αth

percentile of the distribution of the independent variable given the regressors, rather than
the mean of the distribution of the dependent variable as in standard OLS regressions. This
allows to compare how different quantiles of the dependent variables might affect the regres-
sand, hence it is suitable to analyse tail events. While Adrian and Brunnermeier (2016)
employ an estimator based on an augmented regression, we further simplify the estimation of
∆CoV aR following the approach in Benoit et al. (2013), which is consistent with the original
formulation.

First we regress individual returns on market returns:

rsys,t = γ1 + γ2ri,t + ε
sys|i
α,t

The estimated coefficients (denoted by ̂) are employed to build CoVaR. The conditional
VaR of bank i (V ariα,t) is obtained from the quasi maximum likelihood estimates of conditional
variance generated by the same TGARCH model described above (see Benoit et al., 2013,
p.38).

CoV ar
sys|i
α,t = γ̂1 + γ̂2V ar

i
α,t

Finally ∆CoV ar is obtained from the difference between the αth and the median quantile
of CoV ar.

∆CoV ar
sys|i
α,t = CoV ar

sys|i
α,t − CoV ar

sys|i
0.5,t

∆CoV ar
sys|i
α,t = γ̂2

(
V aRiα,t − V aRi0.5,t

)
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