278 research outputs found

    Deuterium enrichment of ammonia produced by surface N+H/D addition reactions at low temperature

    Get PDF
    The surface formation of NH3 and its deuterated isotopologues – NH_2D, NHD_2, and ND_3 – is investigated at low temperatures through the simultaneous addition of hydrogen and deuterium atoms to nitrogen atoms in CO-rich interstellar ice analogues. The formation of all four ammonia isotopologues is only observed up to 15 K, and drops below the detection limit for higher temperatures. Differences between hydrogenation and deuteration yields result in a clear deviation from a statistical distribution in favour of deuterium enriched species. The data analysis suggests that this is due to a higher sticking probability of D atoms to the cold surface, a property that may generally apply to molecules that are formed in low temperature surface reactions. The results found here are used to interpret ammonia–deuterium fractionation as observed in pre-protostellar cores

    Solid CO_2 in low-mass young stellar objects: Comparison between Spitzer and laboratory spectra

    Get PDF
    Context. Solid interstellar CO_2 is an abundant component of ice dust mantles. Its ubiquity towards quiescent molecular clouds, as well as protostellar envelopes, has recently been confirmed by the IRS (InfraRed Spectrograph) aboard the Spitzer Space Telescope. Although it has been shown that CO_2 cannot be efficiently formed in the gas phase, the CO_2 surface formation pathway is still unclear. To date several CO_2 surface formation mechanisms induced by energetic (e.g., UV photolysis and cosmic ray irradiation) and non-energetic (e.g., cold atom addition) input have been proposed. Aims. Our aim is to investigate the contribution of cosmic ray irradiation to the formation of CO_2 in different regions of the interstellar medium (ISM). To achieve this goal we compared quantitatively laboratory data with the CO_2 bending mode band profile observed towards several young stellar objects (YSOs) and a field star by the Spitzer Space Telescope. Methods. All the experiments presented here were performed at the Laboratory for Experimental Astrophysics in Catania (Italy). The interstellar relevant samples were all irradiated with fast ions (30−200 keV) and subsequently annealed in a stainless steel high vacuum chamber (P < 10^(-7) mbar). Chemical and structural modifications of the ice samples were monitored by means of infrared spectroscopy. Laboratory spectra were then used to fit some thirty observational spectra. Results. A qualitative analysis shows that a good fit can be obtained with a minimum of two components. The choice of the laboratory components is based on the chemical-physical condition of each source. A quantitative analysis of the sources with known visual extinction (A_V) and methanol abundances highlights that the solid carbon dioxide can be efficiently and abundantly formed after ion irradiation of interstellar ices in all the selected YSOs in a time compatible with cloud lifetimes (3 × 10^7 years). Only in the case of field stars can the expected CO_2 column density formed upon energetic input not explain the observed abundances. This result, to be confirmed along the line of sight to different quiescent clouds, gives an indirect indication that CO_2 can also be formed in an early cloud stage through surface reactions induced by non-energetic mechanisms. In a later stage, when ices are exposed to higher UV and cosmic ray doses, the CO_2 total abundance is strongly affected by energetic formation mechanisms. Conclusions. Our results indicate that energetic processing of icy grain mantles significantly contribute to the formation of solid phase interstellar CO_2

    Water formation at low temperatures by surface O2 hydrogenation I: characterization of ice penetration

    Full text link
    Water is the main component of interstellar ice mantles, is abundant in the solar system and is a crucial ingredient for life. The formation of this molecule in the interstellar medium cannot be explained by gas-phase chemistry only and its surface hydrogenation formation routes at low temperatures (O, O2, O3 channels) are still unclear and most likely incomplete. In a previous paper we discussed an unexpected zeroth-order H2O production behavior in O2 ice hydrogenation experiments compared to the first-order H2CO and CH3OH production behavior found in former studies on hydrogenation of CO ice. In this paper we experimentally investigate in detail how the structure of O2 ice leads to this rare behavior in reaction order and production yield. In our experiments H atoms are added to a thick O2 ice under fully controlled conditions, while the changes are followed by means of reflection absorption infrared spectroscopy (RAIRS). The H-atom penetration mechanism is systematically studied by varying the temperature, thickness and structure of the O2 ice. We conclude that the competition between reaction and diffusion of the H atoms into the O2 ice explains the unexpected H2O and H2O2 formation behavior. In addition, we show that the proposed O2 hydrogenation scheme is incomplete, suggesting that additional surface reactions should be considered. Indeed, the detection of newly formed O3 in the ice upon H-atom exposure proves that the O2 channel is not an isolated route. Furthermore, the addition of H2 molecules is found not to have a measurable effect on the O2 reaction channel.Comment: 1 page, 1 figur

    Water formation at low temperatures by surface O2 hydrogenation II: the reaction network

    Full text link
    Water is abundantly present in the Universe. It is the main component of interstellar ice mantles and a key ingredient for life. Water in space is mainly formed through surface reactions. Three formation routes have been proposed in the past: hydrogenation of surface O, O2, and O3. In a previous paper [Ioppolo et al., Astrophys. J., 2008, 686, 1474] we discussed an unexpected non-standard zeroth-order H2O2 production behaviour in O2 hydrogenation experiments, which suggests that the proposed reaction network is not complete, and that the reaction channels are probably more interconnected than previously thought. In this paper we aim to derive the full reaction scheme for O2 surface hydrogenation and to constrain the rates of the individual reactions. This is achieved through simultaneous H-atom and O2 deposition under ultra-high vacuum conditions for astronomically relevant temperatures. Different H/O2 ratios are used to trace different stages in the hydrogenation network. The chemical changes in the forming ice are followed by means of reflection absorption infrared spectroscopy (RAIRS). New reaction paths are revealed as compared to previous experiments. Several reaction steps prove to be much more efficient (H + O2) or less efficient (H + OH and H2 + OH) than originally thought. These are the main conclusions of this work and the extended network concluded here will have profound implications for models that describe the formation of water in space.Comment: 1 page, 1 figur

    H-atom addition and abstraction reactions in mixed CO, H2CO and CH3OH ices: an extended view on complex organic molecule formation

    Get PDF
    Complex organic molecules (COMs) have been observed not only in the hot cores surrounding low- and high- mass protostars, but also in cold dark clouds. Therefore, it is interesting to understand how such species can be formed without the presence of embedded energy sources. We present new laboratory experiments on the low-temperature solid state formation of three complex molecules: methyl formate (HC(O)OCH3), glycolaldehyde (HC(O)CH2OH) and ethylene glycol (H2C(OH)CH2OH), through recombination of free radicals formed via H-atom addition and abstraction reactions at different stages in the CO-H2CO-CH3OH hydrogenation network at 15 K. The experiments extend previous CO hydrogenation studies and aim at resembling the physical&chemical conditions typical of the CO freeze-out stage in dark molecular clouds, when H2CO and CH3OH form by recombination of accreting CO molecules and H-atoms on ice grains. We confirm that H2CO, once formed through CO hydrogenation, not only yields CH3OH through ongoing H-atom addition reactions, but is also subject to H-atom-induced abstraction reactions, yielding CO again. In a similar way, H2CO is also formed in abstraction reactions involving CH3OH. The dominant methanol H-atom abstraction product is expected to be CH2OH, while H-atom additions to H2CO should at least partially proceed through CH3O intermediate radicals. The occurrence of H-atom abstraction reactions in ice mantles leads to more reactive intermediates (HCO, CH3O and CH2OH) than previously thought, when assuming sequential H-atom addition reactions only. This enhances the probability to form COMs through radical-radical recombination without the need of UV photolysis or cosmic rays as external triggers.Comment: 20 pages, 8 figure

    Relevance of the H_2 + O reaction pathway for the surface formation of interstellar water. Combined experimental and modeling study

    Get PDF
    The formation of interstellar water is commonly accepted to occur on the surfaces of icy dust grains in dark molecular clouds at low temperatures (10–20 K), involving hydrogenation reactions of oxygen allotropes. As a result of the large abundances of molecular hydrogen and atomic oxygen in these regions, the reaction H_2 + O has been proposed to contribute significantly to the formation of water as well. However, gas-phase experiments and calculations, as well as solid-phase experimental work contradict this hypothesis. Here, we use precisely executed temperature-programmed desorption (TPD) experiments in an ultra-high vacuum setup combined with kinetic Monte Carlo simulations to establish an upper limit of the water production starting from H_2 and O. These reactants were brought together in a matrix of CO_2 in a series of (control) experiments at different temperatures and with different isotopological compositions. The water detected with the quadrupole mass spectrometer upon TPD was found to originate mainly from contamination in the chamber itself. However, if water is produced in small quantities on the surface through H_2 + O, this can only be explained by a combined classical and tunneled reaction mechanism. An absolutely conservative upper limit for the reaction rate was derived with a microscopic kinetic Monte Carlo model that converts the upper limit into the highest possible reaction rate. Incorporating this rate into simulation runs for astrochemically relevant parameters shows that the upper limit to the contribution of the reaction H_2 + O in OH, and hence water formation, is 11% in dense interstellar clouds. Our combined experimental and theoretical results indicate, however, that this contribution is most likely much lower

    Competitiveness and the Logistics Performance Index: The ANOVA method application for Africa, Asia, and the EU regions

    Get PDF
    Abstract This paper analyses the impact of strategic sub-components of the Global Competitiveness Index (GCI) on the Logistics Performance Index (LPI). As a hypothesis, it is assumed that there is a relationship between the LPI and selected factors in GCI, which were grouped into three clusters: infrastructure, human factor, and institutions. The purpose is to investigate which of those groups has the most significant impact on the LPI - an interactive comparative analysis tool created by the World Bank that addresses logistics issues in a broad context against world regions' development or countries' economies. For this purpose, the LPI was used as the dependent variable, while a linear regression model measured some GCI components' influence. The study was conducted for Africa, Asia, and the EU, employing the ANOVA method. The paper finds the three clusters are related to higher efficiency. While the new method shows these clusters are essential for improving the logistics performance index, an extensive range of factors might affect logistics sector performance in both geography and stage of development. In Europe, human factor is far more critical for progressively improving the LPI, while necessary infrastructure remains crucial in Asia. All three factors are central to Africa's logistics development

    Hydrogenation reactions in interstellar CO ice analogues

    Full text link
    Hydrogenation reactions of CO in inter- and circumstellar ices are regarded as an important starting point in the formation of more complex species. Previous laboratory measurements by two groups on the hydrogenation of CO ices resulted in controversial results on the formation rate of methanol. Our aim is to resolve this controversy by an independent investigation of the reaction scheme for a range of H-atom fluxes and different ice temperatures and thicknesses. Reaction rates are determined by using a state-of-the-art ultra high vacuum experimental setup to bombard an interstellar CO ice analog with room temperature H atoms. The reaction of CO + H into H2CO and subsequently CH3OH is monitored by a Fourier transform infrared spectrometer in a reflection absorption mode. In addition, after each completed measurement a temperature programmed desorption experiment is performed to identify the produced species. Different H-atom fluxes, morphologies, and ice thicknesses are tested. The formation of both formaldehyde and methanol via CO hydrogenation is confirmed at low temperature (12-20 K). We confirm, as proposed by Hidaka et al., that the discrepancy between the two Japanese studies is mainly due to a difference in the applied hydrogen atom flux. The production rate of formaldehyde is found to decrease and the penetration column to increase with temperature. In order to fully understand the laboratory data, the experimental results are interpreted using Monte Carlo simulations. This technique takes into account the layered structure of CO ice. Temperature-dependent reaction barriers and diffusion rates are inferred using this model. The model is extended to interstellar conditions to compare with observational H2CO/CH3OH data.Comment: accepted by A. & A., 21 pages, 15 figure
    • …
    corecore