24 research outputs found

    Diagnostic approach to neurotransmitter monoamine disorders: experience from clinical, biochemical, and genetic profiles.

    No full text
    International audienceBackground and aim To improve the diagnostic work‐up of patients with diverse neurological diseases, we have elaborated specific clinical and CSF neurotransmitter patterns. Methods Neurotransmitter determinations in CSF from 1200 patients revealed abnormal values in 228 (19%) cases. In 54/228 (24%) patients, a final diagnosis was identified. Results We have reported primary (30/54, 56%) and secondary (24/54, 44%) monoamine neurotransmitter disorders. For primary deficiencies, the most frequently mutated gene was DDC (n = 9), and the others included PAH with neuropsychiatric features (n = 4), PTS (n = 5), QDPR (n = 3), SR (n = 1), and TH (n = 1). We have also identified mutations in SLC6A3, FOXG1 (n = 1 of each), MTHFR (n = 3), FOLR1, and MTHFD (n = 1 of each), for dopamine transporter, neuronal development, and folate metabolism disorders, respectively. For secondary deficiencies, we have identified POLG (n = 3), ACSF3 (n = 1), NFU1, and SDHD (n = 1 of each), playing a role in mitochondrial function. Other mutated genes included: ADAR, RNASEH2B, RNASET2, SLC7A2‐IT1 A/B lncRNA, and EXOSC3 involved in nuclear and cytoplasmic metabolism; RanBP2 and CASK implicated in post‐traductional and scaffolding modifications; SLC6A19 regulating amino acid transport; MTM1, KCNQ2 (n = 2), and ATP1A3 playing a role in nerve cell electrophysiological state. Chromosome abnormalities, del(8)(p23)/dup(12) (p23) (n = 1), del(6)(q21) (n = 1), dup(17)(p13.3) (n = 1), and non‐genetic etiologies (n = 3) were also identified. Conclusion We have classified the final 54 diagnoses in 11 distinctive biochemical profiles and described them through 20 clinical features. To identify the specific molecular cause of abnormal NT profiles, (targeted) genomics might be used, to improve diagnosis and allow early treatment of complex and rare neurological genetic diseases

    Caractérisation physiopathologique des syndromes myasthéniques congénitaux : l'exemple de mutations dans le gène

    No full text
    Les syndromes myasthéniques congénitaux (SMC) sont des maladies génétiques rares affectant la jonction neuromusculaire (JNM) et caractérisés par un dysfonctionnement de la neurotransmission. Ils forment un ensemble hétérogène sur le plan physiopathologique et peuvent être classés en trois groupes selon leur origine : présynaptique, synaptique ou postsynaptique. Nous rapportons ici pour la première fois que des mutations dans le gène codant pour une molécule postsynaptique, le récepteur tyrosine kinase spécifique du muscle, MuSK, sont responsables d'un SMC postsynaptique. L'analyse génétique a permis d'identifier deux mutations hétéroalléliques, une mutation entraînant un décalage du cadre de lecture (c.220insC) et une mutation faux-sens (V790M). La biopsie musculaire a montré des anomalies importantes à la fois pré et postsynaptiques de la structure de la jonction neuromusculaire et une diminution sévère de l'expression de la sous-unité ε du récepteur de l'acétylcholine (RACh) et de MuSK. Des expériences in vivo et in vitro ont été réalisées en utilisant des mutants de MuSK reproduisant les mutations humaines. La mutation décalant le cadre de lecture conduit à l'absence de l'expression de MuSK. La mutation faux sens n'affecte pas l'activité catalytique kinase de MuSK mais diminue son expression et sa stabilité conduisant à une diminution de l'agrégation du RACh sous la dépendance de l'agrine. Ces résultats suggèrent fortement que la mutation faux sens, en présence de la mutation nulle sur l'autre allèle, est responsable des modifications synaptiques très importantes observées chez le patient

    MUSK, a new target for mutations causing congenital myasthenic syndrome

    No full text
    International audienceWe report the first case of a human neuromuscular transmission dysfunction due to mutations in the gene encoding the muscle-specific receptor tyrosine kinase (MuSK). Gene analysis identified two heteroallelic mutations, a frameshift mutation (c.220insC) and a missense mutation (V790M). The muscle biopsy showed dramatic pre- and postsynaptic structural abnormalities of the neuromuscular junction and severe decrease in acetylcholine receptor (AChR) epsilon-subunit and MuSK expression. In vitro and in vivo expression experiments were performed using mutant MuSK reproducing the human mutations. The frameshift mutation led to the absence of MuSK expression. The missense mutation did not affect MuSK catalytic kinase activity but diminished expression and stability of MuSK leading to decreased agrin-dependent AChR aggregation, a critical step in the formation of the neuromuscular junction. In electroporated mouse muscle, overexpression of the missense mutation induced, within a week, a phenotype similar to the patient muscle biopsy: a severe decrease in synaptic AChR and an aberrant axonal outgrowth. These results strongly suggest that the missense mutation, in the presence of a null mutation on the other allele, is responsible for the dramatic synaptic changes observed in the patient
    corecore