1,848 research outputs found

    Weighted Low-Regularity Solutions of the KP-I Initial Value Problem

    Full text link
    In this paper we establish local well-posedness of the KP-I problem, with initial data small in the intersection of the natural energy space with the space of functions which are square integrable when multiplied by the weight y. The result is proved by the contraction mapping principle. A similar (but slightly weaker) result was the main Theorem in the paper " Low regularity solutions for the Kadomstev-Petviashvili I equation " by Colliander, Kenig and Staffilani (GAFA 13 (2003),737-794 and math.AP/0204244). Ionescu found a counterexample (included in the present paper) to the main estimate used in the GAFA paper, which renders incorrect the proof there. The present paper thus provides a correct proof of a strengthened version of the main result in the GAFA paper

    Transductive Learning with String Kernels for Cross-Domain Text Classification

    Full text link
    For many text classification tasks, there is a major problem posed by the lack of labeled data in a target domain. Although classifiers for a target domain can be trained on labeled text data from a related source domain, the accuracy of such classifiers is usually lower in the cross-domain setting. Recently, string kernels have obtained state-of-the-art results in various text classification tasks such as native language identification or automatic essay scoring. Moreover, classifiers based on string kernels have been found to be robust to the distribution gap between different domains. In this paper, we formally describe an algorithm composed of two simple yet effective transductive learning approaches to further improve the results of string kernels in cross-domain settings. By adapting string kernels to the test set without using the ground-truth test labels, we report significantly better accuracy rates in cross-domain English polarity classification.Comment: Accepted at ICONIP 2018. arXiv admin note: substantial text overlap with arXiv:1808.0840

    Smooth cutoff formulation of hierarchical reference theory for a scalar phi4 field theory

    Full text link
    The phi4 scalar field theory in three dimensions, prototype for the study of phase transitions, is investigated by means of the hierarchical reference theory (HRT) in its smooth cutoff formulation. The critical behavior is described by scaling laws and critical exponents which compare favorably with the known values of the Ising universality class. The inverse susceptibility vanishes identically inside the coexistence curve, providing a first principle implementation of the Maxwell construction, and shows the expected discontinuity across the phase boundary, at variance with the usual sharp cutoff implementation of HRT. The correct description of first and second order phase transitions within a microscopic, nonperturbative approach is thus achieved in the smooth cutoff HRT.Comment: 8 pages, 4 figure

    A para-differential renormalization technique for nonlinear dispersive equations

    Full text link
    For \alpha \in (1,2) we prove that the initial-value problem \partial_t u+D^\alpha\partial_x u+\partial_x(u^2/2)=0 on \mathbb{R}_x\times\mathbb{R}_t; u(0)=\phi, is globally well-posed in the space of real-valued L^2-functions. We use a frequency dependent renormalization method to control the strong low-high frequency interactions.Comment: 42 pages, no figure

    Atomistic Simulation of Energetic and Entropic Elasticity in Short-chain Polyethylenes

    Get PDF
    The thermodynamical aspects of polymeric liquids subjected to uniaxial elongational flow are examined using atomistically detailed nonequilibrium Monte Carlo simulations. In particular, attention is paid to the energetic effects, in addition to the entropic ones, which occur under conditions of extreme deformation. Atomistic nonequilibrium Monte Carlo simulations of linear polyethylene systems, ranging in molecular length from C24 to C78 and for temperatures from 300 to 450 K, demonstrate clear contributions of energetic effects to the elasticity of the system. These are manifested in a conformationally dependent heat capacity, which is significant under large deformations. Violations of the hypothesis of purely entropic elasticity are evident in these simulations, in that the free energy of the system is demonstrated to be composed of significant energetic effects under high degrees of orientation. These arise mainly from favorable intermolecular side-to-side interactions developing in the process of elongation due to chain uncoiling and alignment in the direction of extension

    Energetic and Entropic Elasticity of Nonisothermal Flowing Polymers: Experiment, Theory, and Simulation

    Get PDF
    The thermodynamical aspects of polymeric liquids subjected to nonisothermal flow are examined from the complementary perspectives of theory, experiment, and simulation. In particular, attention is paid to the energetic effects, in addition to the entropic ones, that occur under conditions of extreme deformation. Comparisons of experimental measurements of the temperature rise generated under elongational flow at high strain rates with macroscopic finite element simulations offer clear evidence of the persistence and importance of energetic effects under severe deformation. The performance of various forms of the temperature equation are evaluated with regard to experiment, and it is concluded that the standard form of this evolution equation, arising from the concept of purely entropic elasticity, is inadequate for describing nonisothermal flow processes of polymeric liquids under high deformation. Complete temperature equations, in the sense that they possess a direct and explicit dependence on the energetics of the microstructure of the material, provide excellent agreement with experimental data

    Significance of small voltage in impedance spectroscopy measurements on electrolytic cells

    Get PDF
    We investigate, theoretically, for what amplitude of the applied voltage to an electrolytic cell the concept of impedance is meaningful. The analysis is performed by means of a continuum model, by assuming the electrodes perfectly blocking. We show that, in the low-frequency range, the electrolytic cell behaves as a linear system only if the amplitude of the measurement voltage is small with respect to the thermal voltage V(T)=k(B)T/q, where k(B)T is the thermal energy, and q is the modulus of the electrical charge of the ions, assumed identical except for the sign of the charge. On the contrary, for large frequency, we prove that the amplitude of the applied signal has to be small with respect to a critical voltage that is frequency dependent. The same kind of analysis is presented for the case in which the diffusion coefficients of the positive ions is different from that for negative ions, and for the case where surface adsorption takes place

    Energetic and Entropic Elasticity of Nonisothermal Flowing Polymers: Experiment, Theory, and Simulation

    Get PDF
    The thermodynamical aspects of polymeric liquids subjected to nonisothermal flow are examined from the complementary perspectives of theory, experiment, and simulation. In particular, attention is paid to the energetic effects, in addition to the entropic ones, that occur under conditions of extreme deformation. Comparisons of experimental measurements of the temperature rise generated under elongational flow at high strain rates with macroscopic finite element simulations offer clear evidence of the persistence and importance of energetic effects under severe deformation. The performance of various forms of the temperature equation are evaluated with regard to experiment, and it is concluded that the standard form of this evolution equation, arising from the concept of purely entropic elasticity, is inadequate for describing nonisothermal flow processes of polymeric liquids under high deformation. Complete temperature equations, in the sense that they possess a direct and explicit dependence on the energetics of the microstructure of the material, provide excellent agreement with experimental data

    Asymptotic channels and gauge transformations of the time-dependent Dirac equation for extremely relativistic heavy-ion collisions

    Get PDF
    We discuss the two-center, time-dependent Dirac equation describing the dynamics of an electron during a peripheral, relativistic heavy-ion collision at extreme energies. We derive a factored form, which is exact in the high-energy limit, for the asymptotic channel solutions of the Dirac equation, and elucidate their close connection with gauge transformations which transform the dynamics into a representation in which the interaction between the electron and a distant ion is of short range. We describe the implications of this relationship for solving the time-dependent Dirac equation for extremely relativistic collisions.Comment: 12 pages, RevTeX, 2 figures, submitted to PR
    • …
    corecore