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We investigate, theoretically, for what amplitude of the applied voltage to an electrolytic cell the
concept of impedance is meaningful. The analysis is performed by means of a continuum model, by
assuming the electrodes perfectly blocking. We show that, in the low-frequency range, the
electrolytic cell behaves as a linear system only if the amplitude of the measurement voltage is small
with respect to the thermal voltage VT=kBT /q, where kBT is the thermal energy, and q is the
modulus of the electrical charge of the ions, assumed identical except for the sign of the charge. On
the contrary, for large frequency, we prove that the amplitude of the applied signal has to be small
with respect to a critical voltage that is frequency dependent. The same kind of analysis is presented
for the case in which the diffusion coefficients of the positive ions is different from that for negative
ions, and for the case where surface adsorption takes place. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2137444�

I. INTRODUCTION

The impedance spectroscopy technique is used to char-
acterize the electrical properties of materials and their inter-
faces with the electrodes.1 According to this technique, an
external voltage is applied to the sample, and the electrical
current detected. In the limit of small applied voltage, the
electrical current is proportional to the applied voltage. In
this framework, the electrical impedance defined by the ratio
voltage/current is independent of the amplitude of the ap-
plied voltage. Our aim in this paper is to study for what
amplitude of the applied voltage an electrolytic cell behaves
as a linear system, and hence the concept of electrical im-
pedance is meaningful. Our analysis will be performed by
means of a continuum model, in the sense of Ref. 2. The
paper is organized as follows. In this Introduction we enu-
merate the fundamental hypotheses performed to obtain an
analytical solution for the fundamental equations of the con-
tinuum model for the electrolytic cell. In Sec. II the case in
which the positive and negative ions have the same mobility
is considered. The generalization of the model to the case in
which the mobility of the positive ions is different from the
one of the positive ions is discussed in Sec. III. The case in
which the surfaces adsorb ions is presented in Sec. IV. The
results of the paper are discussed in Sec. V, whereas Sec. VI
is devoted to the conclusions.

The influence of the diffuse layer of the ionic charge on
the impedance spectroscopy of a cell of liquid has been ana-
lyzed in Ref. 3. In the theoretical investigation presented in
Ref. 3, it is considered a slab of thickness d filled by an
isotropic liquid. The z axis of the Cartesian reference frame
used in the description is normal to the bounding surfaces at

z= ±d /2, and it is assumed that in thermodynamical equilib-
rium the liquid contains a density N of ions of positive and
negative sign, uniformly distributed. The ions are assumed to
be identical in all the aspects, except for the sign of the
electrical charge. In particular, they have the same mobility
�p=�m=�, where p and m indicate positive and negative
ions. The surfaces limiting the sample are also assumed iden-
tical, with the same adsorption energy with respect to the two
types of ions, in order to avoid the problems connected with
the selective ion adsorption.4,5 In this situation the liquid is
globally and locally neutral. The presence of an external
electric voltage produces a perturbation of the distribution of
the ions in the liquid, in the sense that it remains globally
neutral, but now it is locally charged.6 In the following we
suppose that the sample is submitted to an external sinu-
soidal voltage of amplitude V0 and frequency f =� / �2��. By
indicating with np and nm the densities of the two kinds of
ions, we have np�z , t�=nm�z , t�=N, for V0=0, and np�z , t�
�nm�z , t�, for V0�0.

II. CASE IN WHICH THE IONS HAVE THE SAME
DIFFUSION COEFFICIENT: DP=DM=D

The fundamental equations of the problem are the equa-
tion of continuity,

�nr

�t
= −

� jr

�z
, �1�

where r= p, m, and the equation of Poisson,
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�2V

�z2 = −
q

�
�np − nm� , �2�

where q is the electrical charge of the ions, and jr the density
of currents of positive �r= p� and negative �r=m� ions given
by

jr = − D� �nr

�z
±

q

kBT
nr

�V

�z
� , �3�

with + for r= p and − for r=m.3 Since the electrodes are
supposed perfectly blocking, we have the following bound-
ary conditions on jr:

jr�±d/2,t� = 0. �4�

The other boundary conditions of the problem are connected
with the imposed difference of potential that we assume of
the type

V�±d/2,t� = ± �V0/2�exp�i�t� . �5�

As discussed in Ref. 3, the equation of continuity is nonlin-
ear. Hence, for arbitrary applied voltage the cell does not
behave as a linear system. Only in the case in which in the
presence of the external voltage the actual ionic densities,
nr=N+�nr�z , t�, are such that �nr�z , t��N, the system be-
haves in a linear manner, and the concept of electrical im-
pedance is meaningful. In this framework Eq. �1� and Eq.
�2�, by taking into account Eq. �3�, can be rewritten as

��nr�z,t�
�t

= − D� �2�nr�z,t�
�z2 ±

qN

kBT

�2V�z,t�
�z2 � ,

�2V�z,t�
�z2 = −

q

�
��np�z,t� − �nm�z,t�� , �6�

which are now linear. We look for solutions of Eqs. �6� of the
type �nr�z , t�=�r�z�exp�i�t� and V�z , t�=��z�exp�i�t�. By
substituting these trial functions in Eqs. �6�, we get

i��r�z� = − D��r��z� ±
qN

kBT
���z�� ,

���z� = −
q

�
��p�z� − �m�z�� . �7�

Equations �6� form a system of ordinary differential equa-
tions with constant coefficients. In the case under consider-
ation, where Dp=Dm, the condition V�d /2 , t�=−V�−d /2 , t�
implies V�z , t�=−V�−z , t� and np�z , t�=nm�−z , t�. It follows
that �+�z�=�−�−z�. A standard analysis gives

�r�z� = ± p0 sinh�	z� ,

��z� = − 2�q/�	2�p0 sinh�	z� + cz , �8�

where 	= �1/
��1+ i�� /D�
2, and 
=��kBT / �2Nq2� is the
length of Debye.7 The coefficients p0 and c appearing in Eqs.
�8�, are determined by means of the boundary conditions �4�
and �5� and are found to be

p0 = −
Nq	

2kBT

1

�1/
2	�sinh�	d/2� + i��d/2D�cosh�	d/2�
V0,

c = i
�

2D

cosh�	d/2�
�1/
2	�sinh�	d/2� + i��d/2D�cosh�	d/2�

V0, �9�

as reported in Ref. 8
We can now investigate for what amplitude of the ap-

plied signal the condition �nr�z , t��N is verified. Since
�nr�z , t�=�r�z�exp�i�t�, the maximum variation of �nr�z , t�
is ��nr�z , t��=2���z��� �p0 sinh�	d /2��. Consequently, the
condition we are looking for is, by taking into account �9�,

V0 � U = VT	 1


2	2 + i
�d

2D	
coth�	

d

2
�	 , �10�

where VT=kBT /q is the thermal voltage. For a numerical
analysis of the analysis presented above, we suppose that q
=1.6�10−19 A s �monovalent ions�, N=4.2�1020 m−3, �
=6.7��0, T=300 K, d=25 �m, and S=2�10−4 m2.9 With
these values for the physical parameters, relevant to a com-
mercial 5CB nematic liquid crystal, the length of Debye is


1.05�10−7 m. In Fig. 1 we show the frequency depen-
dence of U by assuming Dp=Dm=8.2�10−12 m2/s.9 As it is
evident from this figure, in the limit of �→0, U tends to VT,
as expected. In fact, in this region the profile of the electric
potential is given by the Poisson–Boltzmann equation, where
the thermal energy kBT is compared with the electrostatic
energy qV. On the contrary, for large � , U diverges as �1/2.
By means of �10� we get, in the limit of d
, the asymptotic
expressions

U�� → 0� = VT�1 +
1

2
� 
d

2D
�2

�2� ,

U�� → �� =
1

2
VT

d
�D

�� . �11�

From the previous discussion, it follows that if the investi-
gations on the dielectric properties of the material have to be
performed in the very low-frequency region, the amplitude
of the signal applied to the sample has to be small with

FIG. 1. Frequency dependence of the critical voltage U for an electrolytic
cell. In the low frequency region U��→0�=VT�1+ �1/2��
 d� /2D�2�. On
the contrary, in the high-frequency range, U��→��=VT

��d2 /D. The curve
is drawn for q=1.6�10−19 A s �monovalent ions�, N=4.2�1020 m−3, �
=6.7��0, T=300 K, d=25 �m, S=2�10−4 m2, and Dp=Dm=8.2
�10−12 m2/s. The logarithms are in base 10 and � is in rad/s.

113703-2 Barbero, Alexe-Ionescu, and Lelidis J. Appl. Phys. 98, 113703 �2005�

Downloaded 30 Jan 2008 to 129.16.112.89. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



respect to kBT /q. On the contrary, for large � this condition
is substituted by a new one, which depends on the frequency.

III. CASE IN WHICH THE IONS HAVE DIFFERENT
DIFFUSION COEFFICIENT: DPÅDM

The analysis presented previously can be generalized to
the situation in which the mobilities of the positive ions, Dp,
is different from that of the negative ions, Dm. In this case, jr

are given by

jr = − Dr� �nr

�z
±

q

kBT
nr

�V

�z
� . �12�

The fundamental equations of the problem are still Eq. �1�
and Eq. �2�, which have to be solved with the boundary
conditions �4� and �5�. By assuming again that �nr�z , t��N,
the profiles of the bulk densities of ions and of the electric
potential are given by

�p�z� = C1 sinh��1z� + C2 sinh��2z� ,

�m�z� = k1C1 sinh��1z� + k2C2 sinh��2z� , �13�

��z� = −
q

�
�1 − k1

�1
2 C1 sinh��1z� +

1 − k2

�2
2 C2 sinh��2z��

+ Az , �14�

respectively, as it has been shown in Ref. 10 The integration
constants C1 , C2, and A are given by the boundary condi-
tions �4� and �5�. In �13� and �14� the parameters �1 , �2 , k1,
and k2 are

�1,2 =�1

2
� 1

�p
2 +

1

�m
2 � ±��1

2
� 1

�p
2 −

1

�m
2 ��2

+
1

4
4 �15�

and

k1,2 = − 2
2��1,2
2 −

1

�p
2� , �16�

where ��
2 =2
2 / �1+2i�� /D��
2�. By imposing again the

condition 2��r�z���N, we obtain the critical voltage U such
that the system under investigation can be considered linear
when V0�U. The results of the numerical calculations are
reported in Fig. 2, by assuming for the physical parameters
of the sample again the ones reported above, and Dp

=10Dm=8.2�10−11 m2/s.11 Again, in the low-frequency
range U→VT, whereas for large � , U increases as ��,
according to �11�, with Dp or Dm. Hence, the critical voltage
depends on the larger diffusion coefficient.

IV. CASE IN WHICH THE SURFACES ADSORB IONS

Finally, we can consider the case in which at the elec-
trodes there is adsorption of particles. In this case, by indi-
cating with �r�±d /2 , t�, the surface density of adsorbed par-
ticles, instead of the boundary conditions �4� we have now,

jr�±d/2,t� =
d�r�±d/2,t�

dt
. �17�

In the Langmuir’s approximation,

d�r�±d/2,t�
dt

= knr�±d/2,t� −
1

�
�r�±d/2,t� , �18�

where k and � are the adsorption coefficient and the desorp-
tion time, respectively.13 In this framework, the profiles of
the ionic densities and of the electrical potential across the
sample are still given by �8�, where p0 and c follow from the
boundary conditions �5�, �17�, and �18�, and are

�1 + 	
k�

1 + i��
tanh�	d

2
��p0 − i

Nq/�kBT�
��/D	�cosh�	d/2�

c = 0,

− 2
q

�	2 sinh�	d

2
�p0 +

d

2
c = V0/2, �19�

where N is now the bulk density of ions in the absence of an
external electrical voltage, as discussed in Ref 12. By impos-
ing, as in the previous cases, the condition 2��r�z���N, we
obtain the critical voltage U such that the system under in-
vestigation can be considered linear when V0�U. The result
of the numerical calculations is reported in Fig. 3, by assum-
ing for the physical parameters of the sample again the ones
reported above, with Dp=Dm=8.2�10−12 m2/s,9 k
=10−6 m s−1 and �=0.1.13 As expected in the low-frequency
range U→VT. In the high-frequency range, U is still given
by �11�. The maximum deviation of the present U with re-
spect to the one relevant to the case in which the adsorption
is absent takes place for a frequency �
1/�.

V. DISCUSSION

The important point in the analysis presented previously
is that in the problem under investigation there is an intrinsic
voltage U. For V0�U the system behaves in a linear manner,
and the concept of electrical impedance is useful. When the
condition V0�U is not satisfied, the system behave in a non-
linear way. This means that if V�±d /2 , t�= ± �V0 /2�exp�i�t�,

FIG. 2. The same as in Fig. 1, when q=1.6�10−19 A s �monovalent ions�,
N=4.2�1020 m−3, �=6.7��0, T=300 K, d=25 �m, S=2�10−4 m2, and
Dp=10Dm. The dotted line corresponds to the case Dp=Dm=8.2
�10−12 m2/s. The continuous line correspond to the case Dp=10Dm=8.2
�10−11 m2/s. The logarithms are in base 10 and � is in rad/s.
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�nr�z , t�, and V�z , t� are not harmonic functions with fre-
quency f =� / �2��. In this case �nr�z , t� and V�z , t� are of the
type

�nr�z,t� = 
h

�r,h�z�exp�ih�t� ,

V�z,t� = 
h

�h�z�exp�ih�t� , �20�

where �r,1�z�=��z� and �1�z�=��z�, introduced previously.
It was possible to analyze the problem in a more techni-

cal way, according to the following scheme. By substituting
expansions �20� into �1� and �2� and into the boundary con-
ditions �4� and �5� one obtains a cascade of differential equa-
tions and the relevant boundary conditions for �r,h�z� and
�h�z�. For h=1 the equations are

i��r,1�z� = D��r,1� �z� ±
qN

kBT
�1��z�� ,

�1��z� = −
q

�
��p,1�z� − �m,1�z�� , �21�

where, as before, for r= p there is the sign +, and for r=m the
sign −. Equations �21� have to be solved with the boundary
conditions at z= ±d /2,

�1 = ± V0/2, �r,1� ± �qN/kBT��1 = 0, �22�

as we have done in Sec. II. For h=2 one gets

2i��r,2�z� = D��r,2� �z� ±
qN

kBT
�2��z��

±
Dq

kBT
��r,1�z��1��z�� ,

�2��z� =
q

�
��p,2�z� − �m,2�z�� , �23�

with the boundary conditions at z= ±d /2

�2 = 0, �r,2 ± �qN/kBT���2� + ��r,1/N��1�� = 0. �24�

In the same manner it is possible to obtain the bulk differen-
tial equations and the boundary conditions for all h. By
means of �r,h�z� and �h�z� it is possible to evaluate the elec-
trical current in the external circuit I�t�, and hence to deter-
mine the electrical impedance of the cell defined by Z
=V0 exp�i�t� / I�t�. Since I�t� is not a harmonic function of t
with frequency f =� / �2��, it follows that Z=Z�t�. At this
point, knowing the accuracy of the used experimental setup,
it is possible to determine the maximum amplitude, VM, for
which the system under investigation does not behave in a
nonlinear manner. It is clear that this procedure is, in some
way, arbitrary, since it depends on the experimental setup.
On the contrary, our analysis, based on the condition �nr

�N, proves the existence of an intrinsic voltage with which
it is necessary to compare the amplitude of the applied volt-
age.

In the discussion presented previously, we have consid-
ered, for simplicity, the case in which the diffusion coeffi-
cients of the positive and negative ions are the same, and the
adsorption phenomenon is absent. However, a simple inspec-
tion shows that it is valid also in the case where Dp�Dm and
when the adsorption phenomenon is present.

VI. CONCLUSION

By means of a continuum model we have analyzed what
means “small voltage” in the impedance spectroscopy mea-
surements on an electrolytic cell. Actually our analysis is of
some interest for all systems in which the ionic contribution
to the total current is not negligible, as the liquid crystals.

We have shown that, in the low-frequency range, the
applied voltage has to be small with respect to the thermal
voltage VT=kBT /q. In the high-frequency region, the applied
voltage has to be small with respect to the critical voltage
diverging as the square root of the frequency. Our analysis
has been performed by considering the case in which the
Dp=Dm=D, as well as the case in which Dp�Dm. We have
also considered the case in which the limiting surface of the
liquid can absorb ions. The analysis presented in our paper is
simple, however, it was not previously presented. The results
are rather important from an experimental point of view. In
fact, as it has been stressed previously in this paper, the
impedance spectroscopy technique is meaningful only if it is
possible to define the electrical impedance of the cell under
investigation. This implies that the system behaves as a lin-
ear system. If this condition is not satisfied, the analysis of
the experimental data is more complex, and it has to be done,
taking into account the nonlinear character of the system
under investigation. In recent papers devoted to the imped-
ance spectroscopy analysis of different systems the applied
voltage to the cell cannot be considered small in the fre-
quency range where the measurements are performed.11,14–16

FIG. 3. The same as in Fig. 1, when the adsorption phenomenon is taken
into account, in the Langmuir’s approximation, by assuming q=1.6
�10−19 A s �monovalent ions�, N=4.2�1020 m−3, �=6.7��0, T=300 K,
d=25 �m, S=2�10−4 m2, and Dp=Dm=8.2�10−12 m2/s. In the low- and
high-frequency ranges the critical voltage U is still given by �11�. The maxi-
mum influence of the adsorption effect on U is localized around the fre-
quency �
1/�. The continuous curve corresponds to the case where k
=10−6 m s−1 and �=0.1 s, whereas the dotted line corresponds to the case in
which the adsorption phenomenon is absent. The logarithms are in base 10
and � is in rad/s.
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Consequently, the systems cannot be considered as linear
systems, and some of the conclusions derived in Refs. 11 and
14–16 could be not correct.
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