45 research outputs found

    BCL-2 Expression is Prognostic for Improved Survival in Non-small Cell Lung Cancer

    Get PDF
    ObjectiveWe used a large patient population to identify immunohistochemical biomarkers to enable improved prognostication in patients with non-small cell lung carcinoma (NSCLC).MethodsA tissue microarray was constructed using duplicate 0.6 mm cores of formalin-fixed paraffin-embedded tissue blocks from 609 patients with NSCLC. Immunohistochemical was used to detect 11 biomarkers including epidermal growth factor receptor, Her2, Her3, p53, p63, bcl-1, bcl-2, Thyroid transcription factor, carcinoembryonic antigen, chromogranin, and synaptophysin. A clinical database was generated prospectively at the time of tissue collection. Survival outcomes were obtained from a Provincial Cancer Registry database. Univariate and multivariate analyses were performed to look for a relationship between biomarker expression, smoking history, and survival.ResultsSurvival data for 535 cases were available. As of June 2005, 429 patients (80%) had died; of these 286 (54%) died of lung cancer, 117 (22%) died of other known causes, and for 26 (5%) the cause of death was not available. Univariate analysis revealed that bcl-2 (p = 0.007) was the only biomarker prognostic for improved overall survival (OS). bcl-2 (p = 0.021) and p63 (p = 0.025) were both found to be prognostic for improved disease-specific survival (DSS). Multivariate analysis (using age and biomarker expression) revealed that bcl-2 expression is prognostic for improved OS (p = 0.005) and DSS (p = 0.021).ConclusionsOur results suggest that bcl-2 expression is prognostic for improved OS and DSS in NSCLC. Testing for bcl-2 expression in a prospective study will help to determine its clinical relevance in prognostication

    Progressive skin fibrosis is associated with a decline in lung function and worse survival in patients with diffuse cutaneous systemic sclerosis in the European Scleroderma Trials and Research (EUSTAR) cohort.

    Get PDF
    Objectives To determine whether progressive skin fibrosis is associated with visceral organ progression and mortality during follow-up in patients with diffuse cutaneous systemic sclerosis (dcSSc). Methods We evaluated patients from the European Scleroderma Trials and Research database with dcSSc, baseline modified Rodnan skin score (mRSS) ≥7, valid mRSS at 12±3 months after baseline and ≥1 annual follow-up visit. Progressive skin fibrosis was defined as an increase in mRSS >5 and ≥25% from baseline to 12±3 months. Outcomes were pulmonary, cardiovascular and renal progression, and all-cause death. Associations between skin progression and outcomes were evaluated by Kaplan-Meier survival analysis and multivariable Cox regression. Results Of 1021 included patients, 78 (7.6%) had progressive skin fibrosis (skin progressors). Median follow-up was 3.4 years. Survival analyses indicated that skin progressors had a significantly higher probability of FVC decline ≥10% (53.6% vs 34.4%; p<0.001) and all-cause death (15.4% vs 7.3%; p=0.003) than non-progressors. These significant associations were also found in subgroup analyses of patients with either low baseline mRSS (≤22/51) or short disease duration (≤15 months). In multivariable analyses, skin progression within 1 year was independently associated with FVC decline ≥10% (HR 1.79, 95% CI 1.20 to 2.65) and all-cause death (HR 2.58, 95% CI 1.31 to 5.09). Conclusions Progressive skin fibrosis within 1 year is associated with decline in lung function and worse survival in dcSSc during follow-up. These results confirm mRSS as a surrogate marker in dcSSc, which will be helpful for cohort enrichment in future trials and risk stratification in clinical practice

    The Unmet Diagnostic and Treatment Needs in Large Cell Neuroendocrine Carcinoma of the Lung

    No full text
    Large cell neuroendocrine carcinoma of the lung (LCNEC) is currently classified as a rare lung cancer subtype, but given the high incidence of lung cancer, the overall number of cases is considerable. The pathologic diagnosis of LCNEC is mainly based on the microscopic appearance of the tumor cells, the mitotic rate, the amount of intra-tumoral necrosis, and the presence of positive neuroendocrine markers identified by immunohistochemistry. Recently, a subdivision into two main categories was proposed based on mutation signatures involving the RB1, TP53, KRAS, and STK11/LKB1 genes, into SCLC-like (small cell lung cancer-like) and NSCLC-like (non-small cell lung cancer-like) LCNEC. In terms of treatment, surgery is still the best option for resectable, stage I–IIIA cases. Chemotherapy and radiotherapy have conflicting evidence. Etoposide/platinum remains the standard chemotherapy regimen. However, based on the newly proposed LCNEC subtypes, some retrospective series report better outcomes using a pathology-driven chemotherapy approach. Encouraging outcomes have also been reported for immunotherapy and targeted therapy, but the real impact of these strategies is still being determined in the absence of adequate prospective clinical trials. The current paper scrutinized the epidemiology, reviewed the reliability of pathologic diagnosis, discussed the need for molecular subtyping, and reviewed the heterogeneity of treatment algorithms in LCNEC

    Harmonization of PD-L1 Testing in Oncology: A Canadian Pathology Perspective

    No full text
    Checkpoint inhibitors targeting the programmed cell death 1 protein (PD-1) and programmed cell death ligand 1 (PD-L1) are demonstrating promising efficacy and appear to be well tolerated in a number of tumour types. In non-small-cell lung cancer, head-and-neck squamous cell carcinoma, and urothelial carcinoma, outcomes appear particularly favourable in patients with high PD-L1 expression. However, assays for PD-L1 have been developed for individual agents, and they use different antibody clones, immunohistochemistry staining protocols, scoring algorithms, and cut-offs. Given that laboratories are unlikely to use multiple testing platforms, use of one PD-L1 assay in conjunction with a specific therapy will become impractical and could compromise treatment options. Methods to harmonize testing methods are therefore crucial to ensuring appropriate treatment selection. This paper focuses on lung, bladder, and head-and-neck cancer. It reviews and compares available PD-L1 testing methodologies, summarizes the literature about comparability studies to date, discusses future directions in personalized diagnostics, and provides a pathologist’s perspective on PD-L1 testing in the Canadian laboratory setting

    A Case of ALK-Rearranged Combined Lung Adenocarcinoma and Neuroendocrine Carcinoma with Diffuse Bone Metastasis and Partial Response to Alectinib

    No full text
    We report a rare case of stage IV pulmonary combined large-cell neuroendocrine carcinoma (LCNEC) and adenocarcinoma (ACA), both demonstrating anaplastic lymphoma kinase (ALK) rearrangement by IHC and FISH. This 61-year-old lifelong nonsmoking Asian woman presented with a cough, and after diagnosis and surgical treatment, completed four cycles of adjuvant cisplatin and etoposide chemotherapy. She subsequently developed recurrence with bony metastases of exclusively ALK-positive LCNEC. Alectinib was started, and the patient experienced a partial response.Medicine, Faculty ofNon UBCPathology and Laboratory Medicine, Department ofReviewedFacultyResearcherUndergraduateOthe

    Capabilities for identification and confirmation of bacterial biological agents

    No full text
    Military Medical Service is able for detection, identification and confirmation of biological agents; it is part of medical protection against CBRN weapons. We are specialized capabilities for in vitro tests, under construction, the maximum containment laboratory designed for work with Risk Group Microorganisms. An efficient primary containment system must be in place, consisting of one or a combination of the following: Class III safety cabinet laboratory, passage of two doors, suit laboratory, controlled access, controlled air system. Negative pressure in the facility, supply and exhaust air must be HEPA-filtered, decontamination of effluents, sterilization of waste and materials, airlock entry ports for specimens, materials and animals must be provided etc. Complementary is an Animal facility for in vivo tests. This is suitable for work with animals that are deliberately inoculated with microorganisms in Risk Group

    Modern medicine has a new technology: therapeutic electroporation

    No full text
    Electroporation is considered a new start-up in the treatment of various tumors; currently, researches are being conducted in order to develop this technology with medical applications. The technique consists in the significant increase in the electrical conductivity and permeability of the plasma membrane of cells resulting from the application of an external electric field. It is routinely used in molecular biology to transform bacteria, yeast, protoplasts and is performed using the electroporators. Currently, the process seems to be a real solution that enables a targeted drug to act with maximum efficiency on cells and tissues requiring treatment, resulting in obtaining a good therapeutic effect without major side effects. Therefore, pharmaceutical companies are trying to demonstrate through preclinical studies the potential efficacy of this technology, succeeding in recent years to achieve important steps in this direction

    Improving Time-to-Treatment for Advanced Non-Small Cell Lung Cancer Patients through Faster Single Gene EGFR Testing Using the Idylla™ EGFR Testing Platform

    No full text
    Introduction: Patients with advanced-stage non-small cell lung cancer (NSCLC) may benefit from a short time-to-treatment (TTT). Predictive biomarker testing is performed prior to treatment, as recommended by various international expert consensus bodies. Genetic testing is more time-intensive than immunohistochemistry (IHC) and commonly contributes to prolonged TTT. For epidermal growth factor receptor-positive patients (EGFR+), further genetic testing may not be required due to the mutual exclusivity of actionable mutations. Methods: The trial cohort (N = 238) received both BC Cancer NGS panel (Oncopanel) and Idylla EGFR testing. Data were also collected for a control cohort (N = 220) that received Oncopanel testing. For each patient, the time that the lab received the sample, the time taken to report the NGS and Idylla tests, the time of first treatment, and the final treatment regimen were recorded. Results: A concordance frequency of 98.7% (232/235) was observed between the Idylla and NGS panel. The lab turnaround time (TAT) was faster for the Idylla test by an average of 12.4 days (N = 235, p < 0.01). Overall, the average TTT in the trial cohort (N = 114) was 10.1 days faster (p < 0.05) than the control (N = 114), leading to a 25% reduction in TTT. For patients treated based on EGFR positivity, the mean TTT was 16.8 days faster (p < 0.05) in the trial cohort (N = 33) than the control cohort (N = 28), leading to a 48% reduction in TTT. Conclusion: Using the Idylla EGFR test as part of the molecular testing repertoire in advanced-stage NSCLC patients could significantly reduce TTT

    Consensus Recommendations to Optimize Testing for New Targetable Alterations in Non-Small Cell Lung Cancer

    No full text
    Non-small cell lung cancer (NSCLC) has historically been associated with a poor prognosis and low 5-year survival, but the use of targeted therapies in NSCLC has improved patient outcomes over the past 10 years. The pace of development of new targeted therapies is accelerating, with the associated need for molecular testing of new targetable alterations. As the complexity of biomarker testing in NSCLC increases, there is a need for guidance on how to manage the fluid standard-of-care in NSCLC, identify pragmatic molecular testing requirements, and optimize result reporting. An expert multidisciplinary working group with representation from medical oncology, pathology, and clinical genetics convened via virtual meetings to create consensus recommendations for testing of new targetable alterations in NSCLC. The importance of accurate and timely testing of all targetable alterations to optimize disease management using targeted therapies was emphasized by the working group. Therefore, the panel of experts recommends that all targetable alterations be tested reflexively at NSCLC diagnosis as part of a comprehensive panel, using methods that can detect all relevant targetable alterations. In addition, comprehensive biomarker testing should be performed at the request of the treating clinician upon development of resistance to targeted therapy. The expert multidisciplinary working group also made recommendations for reporting to improve clarity and ease of interpretation of results by treating clinicians and to accommodate the rapid evolution in clinical actionability of these alterations. Molecular testing of all targetable alterations in NSCLC is the key for treatment decision-making and access to new therapies. These consensus recommendations are intended as a guide to further optimize molecular testing of new targetable alterations
    corecore