70 research outputs found

    Ising model fog drip: the first two droplets

    Full text link
    We present here a simple model describing coexistence of solid and vapour phases. The two phases are separated by an interface. We show that when the concentration of supersaturated vapour reaches the dew-point, the droplet of solid is created spontaneously on the interface, adding to it a monolayer of a visible size

    Crossing random walks and stretched polymers at weak disorder

    Full text link
    We consider a model of a polymer in Zd+1\mathbb{Z}^{d+1}, constrained to join 0 and a hyperplane at distance NN. The polymer is subject to a quenched nonnegative random environment. Alternatively, the model describes crossing random walks in a random potential (see Zerner [Ann Appl. Probab. 8 (1998) 246--280] or Chapter 5 of Sznitman [Brownian Motion, Obstacles and Random Media (1998) Springer] for the original Brownian motion formulation). It was recently shown [Ann. Probab. 36 (2008) 1528--1583; Probab. Theory Related Fields 143 (2009) 615--642] that, in such a setting, the quenched and annealed free energies coincide in the limit N→∞N\to\infty, when d≥3d\geq3 and the temperature is sufficiently high. We first strengthen this result by proving that, under somewhat weaker assumptions on the distribution of disorder which, in particular, enable a small probability of traps, the ratio of quenched and annealed partition functions actually converges. We then conclude that, in this case, the polymer obeys a diffusive scaling, with the same diffusivity constant as the annealed model.Comment: Published in at http://dx.doi.org/10.1214/10-AOP625 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Self-Attractive Random Walks: The Case of Critical Drifts

    Full text link
    Self-attractive random walks undergo a phase transition in terms of the applied drift: If the drift is strong enough, then the walk is ballistic, whereas in the case of small drifts self-attraction wins and the walk is sub-ballistic. We show that, in any dimension at least 2, this transition is of first order. In fact, we prove that the walk is already ballistic at critical drifts, and establish the corresponding LLN and CLT.Comment: Final version sent to the publisher. To appear in Communications in Mathematical Physic

    Ballistic Phase of Self-Interacting Random Walks

    Full text link
    We explain a unified approach to a study of ballistic phase for a large family of self-interacting random walks with a drift and self-interacting polymers with an external stretching force. The approach is based on a recent version of the Ornstein-Zernike theory developed in earlier works. It leads to local limit results for various observables (e.g. displacement of the end-point or number of hits of a fixed finite pattern) on paths of n-step walks (polymers) on all possible deviation scales from CLT to LD. The class of models, which display ballistic phase in the "universality class" discussed in the paper, includes self-avoiding walks, Domb-Joyce model, random walks in an annealed random potential, reinforced polymers and weakly reinforced random walks.Comment: One picture and a few annoying typos corrected. Version to be publishe

    The Statistical Mechanics of Stretched Polymers

    Full text link
    We describe some recent results concerning the statistical properties of a self-interacting polymer stretched by an external force. We concentrate mainly on the cases of purely attractive or purely repulsive self-interactions, but our results are stable under suitable small perturbations of these pure cases. We provide in particular a precise description of the stretched phase (local limit theorems for the end-point and local observables, invariance principle, microscopic structure). Our results also characterize precisely the (non-trivial, direction-dependent) critical force needed to trigger the collapsed/stretched phase transition in the attractive case. We also describe some recent progress: first, the determination of the order of the phase transition in the attractive case; second, a proof that a semi-directed polymer in quenched random environment is diffusive in dimensions 4 and higher when the temperature is high enough. In addition, we correct an incomplete argument from one of our earlier works

    Finite connections for supercritical Bernoulli bond percolation in 2D

    Get PDF
    Two vertices are said to be finitely connected if they belong to the same cluster and this cluster is finite. We derive sharp asymptotics for finite connection probabilities for supercritical Bernoulli bond percolation on Z^2

    An invariance principle to Ferrari-Spohn diffusions

    Full text link
    We prove an invariance principle for a class of tilted (1+1)-dimensional SOS models or, equivalently, for a class of tilted random walk bridges in Z_+. The limiting objects are stationary reversible ergodic diffusions with drifts given by the logarithmic derivatives of the ground states of associated singular Sturm-Liouville operators. In the case of a linear area tilt, we recover the Ferrari-Spohn diffusion with log-Airy drift, which was derived by Ferrari and Spohn in the context of Brownian motions conditioned to stay above circular and parabolic barriers.Comment: Final version to appear in Communications in Mathematical Physics (includes minor updates done at proofreading stage
    • …
    corecore