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FINITE CONNECTIONS FOR SUPERCRITICAL BERNOULLI
BOND PERCOLATION IN 2D

MASSIMO CAMPANINO, DMITRY IOFFE, AND OREN LOUIDOR

Abstract. Two vertices x and y are said to be finitely connected if they belong
to the same cluster and this cluster is finite. We derive sharp asymptotics (1.2) of
finite connections for super-critical Bernoulli bond percolation on Z2.
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1. Introduction and Results

In the case of the two dimensional nearest neighbour Ising model below critical
temperature, truncated two-point functions could be computed exactly,

g(x) = 〈σ0; σx〉β =
φ(nx)

|x|2 e−2τβ(x) (1 + o(1)) , (1.1)

where τβ is the surface tension, nx = x/|x| ∈ S1 and φ is a positive locally analytic
function on S1.

In this paper we rigorously derive a version of (1.1) for the simplest non exactly
solvable two dimensional model: the super-critical Bernoulli bond percolation on
two-dimensional square lattice. The model is self-dual: let p∗ > 1/2, and consider
sub-critical Bernoulli bond percolation measure Bp on the direct lattice Z2 with p =
1−p∗. Let E2 be the set of all nearest neighbour direct bonds. Each direct bond b ∈
E2 intersects exactly one dual bond b∗ ∈ E2

∗ of the dual lattice Z2
∗ = (1/2, 1/2)+ Z2.

Thus each direct percolation configuration η ∈ {0, 1}E2

unambiguously corresponds

to the dual configuration η∗ ∈ {0, 1}E
2
∗ via

η(b) = 1 ⇐⇒ η∗(b∗) = 0.

Of course, the induced measure on {0, 1}E2
∗ is just the super-critical Bernoulli bond

percolation at p∗ and we shall causally take advantage of the fact that both models
are defined on the same probability space and, furthermore, we shall use the same
notation Bp for both.

Two dual lattice points x∗, y∗ ∈ Z2 are said to be finitely connected; {x∗ f←→ y∗}, if
there exists a path of open dual bonds γ∗ leading from x∗ to y∗, but the cluster Cl(x∗)
of x∗ (and hence the cluster Cl(y∗)) is finite. The truncated two-point function is
defined then as

g(x∗) = Bp

(
0∗

f←→ x
∗
)
,

where 0∗
∆
= (1/2, 1/2). For simplicity we shall consider only on-axis directions, that

is we shall focus on asymptotics of g(x∗N) for x∗N
∆
= (N + 1/2, 1/2). It should be

noted, however, that our approach goes through with only minor modifications for
arbitrary lattice directions.

Theorem A. For every p∗ = 1−p > pc = 1/2 there exists a constant ψ = ψ(p∗) > 0
such that

g(x∗N) = Bp

(
0∗

f←→ x
∗
N

)
=

ψ

N2
e−2Nτp(e1) (1 + o(1)) , (1.2)

where e1 = (1, 0) and τp(·) is the inverse correlation length of the sub-critical model
(equivalently, the surface tension of the dual super-critical model).

The logarithmic asymptotics e−2Nτp(e1) can be established by relatively soft ar-

guments [CCGKS]: roughly speaking the event
{

0∗
f←→ x∗N

}
implies two disjoint

sub-critical connections over the strip {(x, y) : 0 6 x 6 N}. The main struggle here
is to recover asymptotics of finite connection probabilities up to zero order terms,
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the correct order 1/N2 of the prefactor in particular. This amounts to developing
a detailed stochastic geometric characterization of long finite super-critical clusters,
which may be considered as the principle new result of this paper.

Sharp asymptotitcs of finite connections for d-dimensional (d > 3) high-density
models were recently investigated in [BPS1, BPS2]. In the case of higher dimensions
the order of the prefactor is N−(d−1)/2. This is the classical off-critical Ornstein-
Zernike prefactor. The expected non-Ornstein-Zernike order of prefactor N−2 in
(1.2) in two-dimensions was clearly understood and discussed on heuristic level in
an earlier literature, see e.g. [BF, BPS2]: The conventional OZ picture comes from
the fluctuation theory of one-dimensional systems. However, finite connections in
two dimensions are described in terms of fluctuation theory of two interacting one
dimensional effective random walk type structures.

Let us elaborate on the latter point. Both the direct sub-critical percolation model
at p < 1/2 and the dual super-critical model at p∗ = 1− p > 1/2 are defined on the
same probability space.

In particular, the event
{

0∗
f←→ x∗N

}
can be written as (see Figure 1)

{
0∗

f←→ x
∗
N

}
= {0∗ ←→ x

∗
N} ∩ CN , (1.3)

where {0∗ ←→ x∗N} means that 0∗ and x∗N are connected in the dual model and the
event CN is defined in terms of the direct percolation model via

CN =
{
η ∈ {0, 1}E2

: ∃ an open direct loop around 0∗ and x
∗
N

}
. (1.4)

0∗ x∗N
γ∗

CN

x

y

v

u

ℓ N − r

Figure 1. The event
{

0∗
f←→ x

∗

N

}
= {0∗ ←→ x

∗

N}∩CN : γ∗ : 0∗ → x
∗

N is a dual

(super-critical) open path, whereas CN is an open direct (sub-critical) loop-like
cluster. The cluster CN splits into irreducible loops around 0∗ and x

∗

N and a pair
of disjoint connections from x to y and from v to u.
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We shall use CN to denote the inner-most connected component which contains

such a loop, and we shall decompose {0∗ f←→ x∗N} according to geometric properties
of CN . We shall see that a typical CN can be split as it is schematically depicted on
Figure 1: There are “irreducible” dual percolation loops from v to x around 0∗ and,
respectively, from u to y around x∗N . In the middle strip {(x, y) : ℓ 6 x 6 N − r}
there are disjoint connections from v to u and from x to y. The notion of irreducibil-
ity will be set up in such a way that ℓ and r will be typically small and will be
eventually integrated out. The crux of the matter is to understand how to compute
the probability of the double connection event in the middle strip. The main thrust
of the theory developed in [CI, CIV1, CIV3] is that on large finite scales sub-critical
percolation clusters have effective random walk structure. One of our two main
results here is a reformulation of the double connection event in the middle strip
in terms of hitting probabilities for two effective random walks conditioned on non-
intersection. The second main result is an adjustment of the fluctuation identities
introduced in [AD, BJD] for computing these probabilities.

Effective random walk picture. We proceed with a description of our effective random
walk picture as it will show up in the reformulation of the double connection event.
Let {σk = (ρk, ξ

1
k, ξ

2
k)} be a collection of i.i.d. N×Z2-valued random variables defined

on some probability space equipped with a probability measure P and satisfy the
following set of conditions:

(P1) There exists α <∞ such that

Range(σ) = {(t, v, x) : |v|, |x| < αt} .
(P2) There exists β > 0 such that (for the exact definition of “.” see the remark
on notational convention below)

P (ρ > t) . e−βt.

(P3) For any t ∈ N the conditional (on ρ = t) distribution of (ξ1, ξ2) is symmetric
in Z2 with respect to the axes and the diagonal {(v, x) : v = x}, that is for any
(v, x) ∈ Z2:

P

(
ξ1 = v, ξ2 = x

∣∣∣ ρ = t
)

= P

(
ξ1 = |v|, ξ2 = |x|

∣∣∣ ρ = t
)

= P

(
ξ1 = x, ξ2 = v

∣∣∣ ρ = t
)
.

(1.5)

Define random walk Sn = (Tn, Vn, Xn) =
∑n

1 σk + S0, and let Pv,x be the law
of this random walk subject to the initial condition S0 = (0, v, x). Consider the
following event

R+
n = {Xk > Vk for k = 1, . . . , n} . (1.6)

Theorem B. There exists a function U : N → R+ of an at most linear growth,
U(z) . z, such that

Pv,x

(
⋃

n

(
{Sn = (N, u, y)} ∩ R+

n

)
)
∼ U(x− v)U(y − u)

N2
, (1.7)
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uniformly in v < x and u < y satisfying |v|, |x|, |u|, |y| . logN .

The above function U is in fact a certain renewal function related to the differences
process Zn = Xn − Vn, which is again a random walk.
Theorem B follows by an adjustment of one-dimensional techniques developed in
[AD, BJD]. It should be noted that (1.7) could be extended to a much larger range
of parameters N, v, x, u and y.

Organization of the paper. The paper is organized as follows: In Section 2 we de-
scribe the percolation geometry of finite connections. We start by introducing the
Z2-lattice notation and by recalling the results of [CI, CIV3] on the geometry of
long sub-critical clusters. This sets up the stage for basic geometric decomposition

(2.3) and (2.8) of Bp

(
0∗

f←→ x∗N

)
. Main claims behind the proof of Theorem A are

collected in Subsection 2.3. As it is explained in Subsections 2.4-2.6 both the the
validity of (2.3) and the claim of Lemma 2.3 follow by a more or less straightforward
adjustment of the techniques developed in [CI, CIV3].

The crucial point is to prove Theorem 2.2. The proof is based on the effective
random walk representation (3.9) and it is explained in Subsection 3.5. Apart from
justifying and establishing various properties of the representation in Section 3 there
are two types of results involved: We need a certain generalization (Theorem 4.1) of
the results of [AD, BJD] on random walks conditioned to stay positive. This issue
is addressed in Section 4. In the concluding Section 5 we develope estimates on
repulsion of effective random walk trajectories and on decoupling of the associated
percolation events.

Remark on notational conventions. Let {an(w)} and {bn(w)} be two sequences of
positive numbers indexed by w from some set of parameters w ∈Wn. We say that
an(w) ∼ bn(w) if there exists a constant c > 0, such that

lim
n→∞

an(w)

bn(w)
= c

uniformly in w ∈ Wn. If we want to specify the exact value of the constant c
appearing above, we shall write an(w)

c∼ bn(w)
Similarly, let us say that an(w) . bn(w), if

lim sup
n→∞

an(w)

bn(w)
< ∞,

uniformly in w ∈Wn. Often the dependence on w will not be written explictly and
furthermore, in some cases, there will be no additional parameter at all. Where con-
fusion arises, we shall indicate the dependency (or lack of it) explicitly. In addition,
that same notation will be used to specify Wn itself. For example, if we say that a
certain property holds uniformly in |w| . vn, where vn is a given sequence, then for
every K fixed this property holds if |w| 6 Kvn and n is large enough. Finally, let
us say that an(w)

∼
= bn(w) if there exists constant c such that an(w) = cbn(w) for

all w ∈Wn.
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In the sequel we shall often rely on the following relation, which we call Gaussian
summation formula: Let A be a non-degenerate quadratic form on Rd. Then,

∑

x∈Zd

e−A(x)/n ∼ nd/2.

2. Geometry of Finite Connections

2.1. Lattice and dual lattice notation. Most of the work will be done on the
direct lattice Z2. We shall use sans-serif font, e.g. x, y, u, . . . for the vertices of Z2

and points in R2 and usual roman font to denote their one-dimensional coordinates,
e.g. x = (t, x). | · | will denote both the absolute values for scalars and the Euclidean
norm for vectors.

All quantities which live on the dual lattice Z2
∗ are marked with ∗, e.g. x∗ for

vertices, e∗ for bonds and γ∗ for paths. For each point x ∈ Z2 define its four
“geographic” dual neighbours:

x
∗
ne = x+(1/2, 1/2), x

∗
se = x+(1/2,−1/2), x

∗
sw = x+(−1/2,−1/2), x

∗
nw = x+(−1/2, 1/2).

Also given a set B ⊆ E2, the set B∗ contains all the bonds which are dual to the
bonds in B.

Next define:

H−
m =

{
x = (k, l) ∈ Z2 : k < m

}
H+

m =
{
x = (k, l) ∈ Z2 : k > m

}

and Hm,r =
{
x = (k, l) ∈ Z2 : m 6 k 6 r

}
.

We shall write Hm instead of Hm,m. The sets of bonds we associate with Hm,r are:

Em,r =
{
(x, y) ∈ E2 : x ∈ Hm,r and y ∈ Hm,r

}

and

E+
m,r = Em,r \ Em,m , E−m,r = Em,r \ Er,r ,

As a shorthand, we write E+
r and E−m for E+

r,∞ and E−−∞,m. Note that for each m 6 r,

both Z2 and E2 could be represented as disjoint unions,

Z2 = H−
m ∨Hm,r ∨H+

r and E2 = E−m ∨ Em,r ∨ E+
r .

Let Em,r be the σ-algebra generated by the direct percolation configuration on Em,r

and define E±
m,r, E±

r in an analogous way. Under Bp, E−
m, Em,r and E+

r are indepen-
dent.

Given a set A ⊆ E2 and a percolation configuration η ∈ {0, 1}A, let us say that

x
A←→ y if x and y are connected by a path of open bonds in η. Given m < r and

a site x ∈ Hm,r let us define Clm,r(x) to be the cluster of sites which are connected
to x by direct open bonds in Em,r. This is a sub-graph of (Hm,r, Em,r) but we shall
frequently treat it as a subset of bonds or vertices only. For example, for A ⊆ Hm,r

or B ⊆ Em,r, we may write {Clm,r(x) = A} or {Clm,r(x) = B} to indicate which
sites or bonds comprise the cluster. Note that an event defined with either of the
two conditions, belongs to Em,r.
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We use Clm,r(x, y) = Clm,r(x) ∩ Clm,r(y) to denote the common cluster of x, y ∈
Hm,r inside the strip Hm,r . Similarly, we use Cl±m,r(. . . ) and Cl±m(. . . ) for the
corresponging clusters restricted to open bonds from E±m,r and E±m.

Finally ≺ stands for the standard lexicographical order on Z2. That is, (x1, x2) =
x ≺ y = (y1, y2) if and only if x1 < y1 or x1 = y1 , x2 < y2.

2.2. Decomposition of {0∗ f←→ x∗N} and basic percolation events. It is time

to describe precisely our basic geometric decomposition of the event
{

0∗
f←→ x∗N

}

(in its representation (1.3)) as it was schematically depicted on Figure 1.
Given 0 < l 6 N let us say that Hl is a cut line of CN if the number of points

# (CN ∩Hl) = 2. Define,

I(∅) ∆
= {0∗ f←→ x

∗
N} ∩ {CN contains less than two cut lines}

In all the remaining cases we can talk about different left-most and right-most cut-
lines of CN : Given 0 < m < N − r 6 N and two pairs of points v, x ∈ Hm and
u, y ∈ HN−r let us say that I([v, x], [u, y]) occurs, if

CN ∩Hm = {v, x} CN ∩HN−r = {u, y} , (2.1)

but

# (CN ∩Hl) > 2 ∀ l = 1, . . . , m− 1 and # (CN ∩HN−l) > 2 ∀ l = 0, . . . , r − 1.

As a result we represent {0∗ f←→ x∗N} as the disjoint union (below ≺ stands for the
lexicographical order relation),

{0∗ f←→ x
∗
N} =

⋃

0<m<N−r 6 N

⋃

v≺x
v,x∈Hm

⋃

u≺y
u,y∈HN−r

I([v, x], [u, y])
⋃
I(∅), (2.2)

and, accordingly,

Bp

(
0∗

f←→ x
∗
N

)
=

∑

0<m<N−r 6 N

∑

v≺x
v,x∈Hm

∑

u≺y
u,y∈HN−r

Bp (I([v, x], [u, y])) + Bp (I(∅)) .

We shall prove that not only Bp (I(∅)) is negligible, but in fact one can restrict atten-
tion to events I([v, x], [u, y]) with v, x being sufficiently close to 0 and, respectively,
u, y being sufficiently close to xN . Namely,

Lemma 2.1.

Bp

(
0∗

f←→ x
∗
N

)
(1 + o(1))

=
∑

0<m<N−r 6 N

∑

|v−0|,|x−0|. log N
v≺x

v,x∈Hm

∑

|xN−u|,|xN−y|. log N
u≺y

u,y∈HN−r

Bp (I([v, x], [u, y]))

∆
=
∑

N
Bp (I([v, x], [u, y]))

(2.3)
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We shall sketch the proof of this lemma in the end of the Section.

For technical reasons, which will become apparent in Lemma 3.1 below, it happens

to be convenient to work with a slight modification Ĩ([v, x], [u, y]) of I([v, x], [u, y]),
the precise definition is given in (2.6). Before, we need to introduce a bit of additional
notation: Given m = 1, . . . , N and w, z ∈ Hm, with w ≺ z, let us say that Cl−m(w, z)
is a loop around 0∗ rooted at (w, z) if,

{
w

E−
m←→ z

}
,

{
w

∗
nw

(E−
m)∗←→ 0∗

(E−
m)∗←→ z

∗
sw

}
and

{
w

∗
sw

(E−
m)∗←→ z

∗
nw

}
. (2.4)

There is a completely symmetric definition of rooted loops around x∗N .
Let Cl−m(w, z) be a loop around 0∗ , rooted at w, z ∈ Hm. We shall say that

1 <l < m is a modified left cut line of Cl−m(w, z) if there exist v, x ∈ Hl such that,

a) Cl−l (v, x) is a loop around 0∗, rooted at (v, x).

b) x
E−

l,m←→ z and x = max
{
Cl−l,m(x, z) ∩Hl

}
.

c) v
E−

l,m←→ w and v = max
{
Cl−l,m(v,w) ∩Hl

}
.

There is a completely symmetric definition of modified right cut lines. A loop is
said to be irreducible if it does not have modified cut lines.

Let l be a cut line of CN and denote {w, z} = CN ∩Hl (with w ≺ z). If Cl−l (w, z)
is not a rooted loop around 0∗ then there must exists another disjoint loop Cl−l (u, v)
around 0∗ for some w ≺ u ≺ v ≺ z with Cl−l (w, z) ∩Cl−l (u, v) = ∅. Indeed it is only
in the latter case when the second of (2.4) is violated. Thus, conditioning on the
realizations of Cl−l (w, z) and using the BK inequality, one deduces,

log Bp

(
Cl−l (w, z) is not a rooted

loop around 0∗

∣∣∣∣
0∗

f←→ x∗N
{w, z} = CN ∩Hl

)

6 log

(
∑

w≺u≺v≺z

Bp

(
Cl−l (u, v) is a loop around 0∗

)
)

. −l. (2.5)

Let us say that a cut line l with {w, z} = CN ∩Hl is strong if both Cl−l (w, z) and
Cl+l (w, z) are rooted loops around 0∗ and, respectively, around x∗N . Inequality (2.5)
above controls conditional probabilities that l is a strong cut line given that it is a
cut line.

Note now that if 1 < k < l < m and l is a left modified cut line of Cl−m(w, z) with
(v, x) beeing the corresponding root, then k is a left modified cut line of Cl−m(w, z) if
and only if it is a left modified cut line of Cl−l (v, x). In paricular, once CN contains
at least one strong cut line the notions of the left-most left modified cut line of CN

and, accordingly, of the right-most right modified cut lines of CN , are well defined.

Events Ĩ([v, x], [u, y]). The events Ĩ([v, x], [u, y]) are defined for 0 < l < N − r 6 N ;
v, x ∈ Hl and u, y ∈ HN−r. They are defined in such a way that they are disjoint for

different choices of v, x, u and y. Moreover, once
{

0∗
f←→ x∗N

}
occurs and CN has

at least two cut lines, one of Ĩ([v, x], [u, y]) necessarily happens. Loosely speaking,
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the event Ĩ([v, x], [u, y]) requires that l and N − r are the left-most (respectively
right-most) modified left (respectively right) cut lines with the corresponding irre-

ducible loops being rooted at (v, x) (respectively (u, y)). Formally, Ĩ([v, x], [u, y]) is
represented as an intersection of three independent events,

Ĩ([v, x], [u, y]) = L([v, x]) ∩ A([v, x], [u, y]) ∩R([u, y]). (2.6)

Events L([v, x]) and R([u, y]). For v, x ∈ Hl, the event L([v, x]) is defined as

L([v, x]) =
{
Cl−l (v, x) is an irreducible loop aroud 0∗

}
.

For u, y ∈ HN−r, the event R([u, y]) is defined as

R([u, y]) =
{
Cl+N−r(u, y) is an irreducible loop aroud x

∗
N

}
.

(See Figure 2(ii), (iii)).

Events A([v, x], [u, y]). For each m < N − r, each pair of vertices v ≺ x; v, x ∈ Hm

and each pair of vertices u ≺ y; u, y ∈ HN−r the event A([v, x], [u, y]) is defined by
the following set of conditions (Figure 2(i))

a) Clm,N−r(v, u) 6= ∅.
b) Clm,N−r(x, y) 6= ∅.
c) v = max{Clm,N−r(v, u) ∩ Hm} and u = max{Clm,N−r(v, u) ∩ HN−r}, where the
maximum is understood in the lexicographical order, e.g. v has the maximal vertical
coordinate among all the vertices in Clm,N−r(v, u) ∩Hm.
d) x = max{Clm,N−r(x, y) ∩Hm} and y = max{Clm,N−r(x, y) ∩HN−r}.
e) Clm,N−r(v, u) ∩ γup(Clm,N−r(x, y)) = ∅, where γup(Clm,N−r(x, y)) is the upper
envelope of the cluster Clm,N−r(x, y).

Notice that conditions c) and e) imply that

v
∗
nw

(Em,N−r)∗←→ u
∗
ne. (2.7)

On the other hand, condition e) by itelf may seem redundant: Indeed in view
of the strict ordering v ≺ x conditions a)-d) already ensures that Clm,N−r(x, y) ∩
Clm,N−r(v, u) = ∅. The reason for choosing such a formulation will become apparent
in Lemma 3.1.

We stress that Ĩ([v, x], [u, y]) are disjoint for different choices of v, x, u and y and
{

0∗
f←→ x

∗
N

}
⊇
⋃

x,v

⋃

u,y

Ĩ([v, x], [u, y]).

Since left-most and right-most modified cut lines are well defined and distinct
whenever CN has at least two strong cut lines, it is rather straightforward to deduce
from (2.3) and (2.5) that,

Bp

(
0∗

f←→ x
∗
N

)
(1 + o(1)) =

∑
N

Bp

(
Ĩ([v, x], [u, y])

)

=
∑

N
Bp (L([v, x])) Bp (A([v, x], [u, y]))Bp (R([u, y])) .

(2.8)
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(i)

(ii)

(iii)

v∗nw

u∗
ne

v

u

x

γ

y

y

u
u∗

ne

x∗N

0∗

v∗nw

v

x

Hm

Hm

HN−r

HN−r

Clm,N−r(x, y)

Clm,N−r(v, u)

Cl−

Cl+

Figure 2. (i) Event A([v, x], [u, y]): γ is the upper envelope of Clm,N−r(x, y)

(ii) Event L([v, x]), Cl− ≡ Cl
−

m(v, x) (iii) Event R([u, v]), Cl+ ≡ Cl
+

N−r(u, y) .

2.3. Proof of Theorem A. The proof of Theorem A will follow immediately from
2.8, once we establish Lemma 2.1, Theorem 2.2 and Lemma 2.3 below.

Recall that τp(·) is the inverse correlation length for the sub-critical model. Set
τp = τp(e1) and tp = τpe1 = (τp, 0). Let us use 〈·, ·〉 to denote the scalar product in
R2. Notice that in view of lattice symmetries,

τp(x
∗
N − 0∗) = Nτp = 〈tp, x∗N − 0∗〉 .

Theorem 2.2. There exists a positive function G : N→ R+, of an at most quadratic
growth; G(z) . z2, such that,

e〈tp,u−v〉+〈tp,y−x〉Bp (A([v, x], [u, y])) ∼ G(〈e2, x− v〉)G(〈e2, y − u〉)
N2

, (2.9)

uniformly in |v|, |x| . logN and |xN − u|, |xN − y| . logN .

The above function G is, of course, related to renewal function U which appears
in the statement of Theorem B.
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Lemma 2.3. Both sums below converge exponentially fast in m, |v|, |x| and, respec-
tively, in r, |xN − u| and |xN − y|,

∑

m>0

∑

v,x∈Hm
v≺x

e〈tp,v〉+〈tp,x〉Bp (L([v, x]))

=
∑

r > 0

∑

u,y∈HN−r
u≺y

e〈tp,xN−u〉+〈tp,xN−y〉Bp (R([u, y])) < ∞.
(2.10)

The main effort will be to prove Theorem 2.2. It is precisely at this stage we shall
need the full power of the theory developed in [CI] and its geometric adjustment as
in [CIV3] combined with results on asymptotic behaviour and repulsion of a pair
of non-intersecting random walks. On the other hand, Lemma 2.3 and Lemma 2.1
follow by a simple adjustment of the renormalization mass-gap type bounds obtained
in [CI]. Accordingly, in the remaining of this subsection we shall briefly recall these
mass-gap estimates and, subsequently, explain (2.10) and and (2.3). The more
difficult proof of (2.9) will be postponed to the next section.

2.4. Structure of sub-critical connections. In this section we shall recall and
reformulate the results of [CI, CIV1, CIV2, CIV3] in a form which is convenient for
later use.

Geometry of the inverse correlation length. For any p < pc the inverse correlation
length is defined via

τp(x) = − lim
n→∞

1

n
log Bp (0←→ ⌊nx⌋) . (2.11)

As it was mentioned above the inverse correlation length at a sub-critical p equals
to the surface tension at the dual super-critical value p∗. A fundamental result
[Me, AB] implies that τp is an equivalent norm on R2 for every p < pc. As such τp
is the support function of the convex compact set Kp, which in fact is precisely the
Wulff shape for the dual super-critical model. The relation between Kp and τp is
given by

Kp =
⋂

x 6=0

{
t ∈ R2 : 〈t, x〉 6 τp(x)

}
and τp(x) = max

t∈∂Kp

〈t, x〉 . (2.12)

Alternatively([CI]) Kp is the closure of the domain of convergence of the series

t ∈ intKp ⇐⇒
∑

x∈Z2

e〈t,x〉Pp (0←→ x) < ∞. (2.13)

Furthermore, as it has been proven in [CI], the boundary ∂Kp is locally analytic and
has a strictly positive curvature. In particular, for each x 6= 0 there is a uniquely
defined dual point t = tx ∈ ∂Kp, such that

τp(x) = 〈t, x〉 .
Geometrically, x is orthogonal to the tangent space Tt∂Kp,

〈x, v〉 = 0 ∀ v ∈ Tt∂Kp. (2.14)
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Forward cone Cδ. Recall that tp = (τp, 0) ∈ ∂Kp is the dual point to the horizontal
axis direction e1.

Let δ > 0 be fixed. The forward cone Cδ is defined as follows,

Cδ =
{
x = (t, x) ∈ R2 : 〈tp, x〉 > (1− δ)τp(x)

}
. (2.15)

In view of the axis symmetries and angular strict convexity of τp there exists α > 0,
such that

Cδ =
{
x = (t, x) ∈ R2 : 0 6 |x| 6 αt

}
.

It happens, however, that the τp-metrics naturally captures the geometry of the
problem and, accordingly, we shall stick to the definition (2.15).

Cone points of Cl(x, y). Let x, y ∈ Z2 and assume that the cluster Cl(x, y) 6= ∅. In
such a case we say that a point z ∈ Cl(x, y) is a cone point of the latter if z lies
strictly between x and y with respect to the e1 direction,

z ∈ Cl(x, y) and 〈tp, x〉 < 〈tp, z〉 < 〈tp, y〉 , (2.16)

and, in addition (Figure 3),

Cl(x, y) ⊆ (z− Cδ) ∪ (z + Cδ) . (2.17)

Clearly, Cl(x, y) cannot have any cone points at all once y 6∈ x + Cδ. In the latter

x

yz

z + Cδz− Cδ

Figure 3. z is a cone point of Cl(x, y)

case, however,

τp(y − x) > 〈tp, y − x〉+ c2δ|y− x|,
where

c2 = min
v∈S1

τp(v)

|v| .

Consequently, there exists ν0 = ν0(p, δ) > 0 such that

Bp (0←→ x) . e−〈tp,x〉−ν0|x|, (2.18)

uniformly in x 6∈ Cδ.
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On the other hand, for x ∈ Cδ, the techniques developed in [CI, CIV1, GI, CIV3]
readily imply the following mass-gap type result: For 0 < k < m and x ∈ Hm

consider the event,

Nk,m(x)
∆
= {Cl(0, x) has no cone points in Hk,m} .

Then,

Theorem 2.4. There exists ν1 = ν1(p, δ) > 0 such that uniformly in k, l ∈ N and
in x ∈ Cδ ∩Hk+l,

Bp (0←→ x ; Nk,k+l(x)) . e−〈tp,x〉−ν1l. (2.19)

Proof. A straight forward adaptation of the arguments in [CI, CIV1, GI, CIV3].
�

Together (2.18) and (2.19) imply: There exists ν2 = ν2(p, δ) > 0, such that uniformly
in l ∈ N and in x ∈ Hl,

∑

k > 0

Bp (0←→ x + ke1 ; Nk,k+l(x + ke1)) . e−〈tp,x〉−ν2|x|. (2.20)

Indeed, if x + ke1 6∈ Cδ, then by (2.18),

Bp (0←→ x + ke1) . exp {− 〈tp, x + ke1〉 − ν0|x + ke1|} 6 e−〈tp,x〉−ν0|x|−kτp.

If, however, x + ke1 ∈ Cδ, then

〈tp, ke1〉+ ν1l > ν3 (k + |x|) ,
for some ν3 = ν3(p, δ), and one can rely on (2.19) in order to conclude that

Bp (0←→ x + ke1 ; Nk,k+l(x)) . e−〈tp,x〉−ν3|x|−kν3.

It follows that,

Bp (0←→ x + ke1 ; Nk,k+l(x)) . e−〈tp,x〉−min{ν0,ν3}|x|−k min{ν3,τp}, (2.21)

uniformly in k, l ∈ N and in x ∈ Hl . Summing over k yields 2.20.

2.5. Proof of Lemma 2.3. Recall that pc = 1/2 < p∗ = 1 − p and that the
sub-critical p-percolation lives on the direct lattice Z2 . We claim that there exists
ν4 = ν4(p) > 0 such that,

Bp (L([v, x])) . exp {− 〈tp, v + x〉 − ν4 (|v|+ |x|)} (2.22)

uniformly in l ∈ N and in v, x ∈ Hl. (2.10) is an immediate consequence. In its turn
(2.22) is a mass-gap estimate of the same type as (2.20). More precisely, for k > 0
define

L−k([v, x]) = ({(−k, 0)←→ v} ◦ {(−k, 0)←→ x}) ∩ L([v, x]).

Then, by a more or less straightforward adjustment of the arguments leading to
(2.21) we infer that there exists ν4 = ν4(p), ν5 = ν5(p) such that,

Bp (L−k([v, x])) . exp {−2kmin {τp, ν5} − 〈tp, v + x〉 − ν4 (|v|+ |x|)} .
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Since,

Bp (L([v, x])) 6
∑

k

Bp (L−k([v, x])) ,

(2.22) follows. �

2.6. Proof of Lemma 2.1. Lemma 2.1 follows by a very similar line of reasoning:
As in the case of (2.22), mass-gap type estimates of [CI, CIV3] imply that there
exists ν6 = ν6(p) > 0, such that

Bp (I([v, x], [u, y])) . e−2Nτp−ν6(|v|+|x|+|x∗N−u|+|x∗N−y|) and Bp (I(∅)) . e−2N(τp+ν6).

These are a-priori bounds: Once Theorem 2.2 is established they render Bp (I(∅))
or Bp (I([v, x], [u, y])), with at least one of |v|, |x|, |x∗N − u|, |x∗N − y| being & logN ,
negligible with respect to the right hand side of (2.3). �

3. Reduction to the Effective RW Picture

We continue to assume that v, x ∈ Hm and u, y ∈ HN−r, with m < N − r. The
Lemma below explains the advantage of working with events A([v, x], [u, y]) and,

consequently, the reasons behind an introduction of modified events Ĩ([v, x], [u, y])
in (2.6).

Lemma 3.1. Let m, r, v, x, u and y be as above. Then,

Bp (A([v, x], [u, y])) = ⊗Bp (A([v, x], [u, y])) , (3.1)

where ⊗Bp means that the clusters Clm,N−r(x, y) and Clm,N−r(v, u) are sampled in-
dependently.

Proof. Let us decomposeA([v, x], [u, y]) with respect to realizations of γup(Clm,N−r(x, y)),

Bp (A([v, x], [u, y])) =
∑

γ

Bp (A([v, x], [u, y]) , γup(Clm,N−r(x, y)) = γ) .

Using A([v, x], [u, y])⋆ for ⋆ = a, . . . e to denote the events described by conditions
a)− e) in the definition of A in Subsection 2.2, we readily see that

Aa ∩ Ac ∩ {Clm,N−r(v, u) ∩ γ = ∅} and Ab ∩ Ad ∩ {γup(Clm,N−r(x, y)) = γ}
are independent under Bp. �

3.1. Decomposition of A([v, x], [u, y]). In light of the previous Lemma, we may
calculate probabilities using the product measure. Since we restrict attention to the
case m, r . logN , for the sake of proving Theorem 2.2 we may now assume without
loss of generality that m = r = 0. Thus,

v = (0, v), x = (0, x), u = (N, u) and y = (N, y).

Given 0 < l < N and w, z ∈ Hl let us say that Hl is a cone cut line and, accordingly,
that {w, z} is a cone couple for {Cl0,N(v, u),Cl0,N(x, y)} if w is a cone point of
Cl0,N(v, u), whereas z is a cone point of Cl0,N(x, y).
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A straightforward adjustment of the renormalization arguments behind (2.19) in
[CI, CIV1, CIV3] implies that there exist ν7 = ν7(p, δ) > 0, such that,

⊗ Bp ({Cl0,N(v, u),Cl0,N(x, y)} has less than two cone cut lines)

. e−〈tp,u−v〉−〈tp,y−x〉−ν7N
(3.2)

uniformly in v, x, u and y under consideration. In the case when {Cl0,N(v, u),Cl0,N(x, y)}
has at least two cone cut lines, say l1, . . . , ln+1 with

{w1 = (l1, w1), z1 = (l1, z1)} , . . . , {wn+1 = (ln+1, wn+1), zn+1 = (ln+1, zn+1}
being the corresponding cone couples, there is a simultaneous irreducible decompo-
sition (see Figure 3.1),

Cl0,N(v, u) = Γ1
b∪Γ1

1∪· · ·∪Γ1
n∪Γ1

f and Cl0,N(x, y) = Γ2
b∪Γ2

1∪· · ·∪Γ2
n∪Γ2

f . (3.3)

x

v

y

u

w1 w2
w3

w4

z1

z2
z3

z4

γup(Cl0,N(x, y))

Cl0,N(x, y)

Cl0,N(v, u)

H0 HN

Hl1
Hl2 Hl3

Hl4

Figure 4. Decomposition of A([v, x], [u, y]): l1, l2, l3, l4 are cut lines.
{w1, z1} , {w2, z2} , {w3, z3} , {w4, z4} are the corresponding cone couples

The simultaneous irreducible decomposition (3.3) sets up the stage for our effective
random walk representation of the double cluster {Cl0,N(v, u),Cl0,N(x, y)}. In fact,
our effective random walk will just run through the cone couples of the latter. We,
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therefore, proceed with a careful description of clusters and associated irreducible
events which show up in (3.3)

3.2. Irreducible pairs and associated events. We shall consider the following
families of clusters:

Initial clusters. For l > 0 and w, z ∈ Hl, let Fb([w, z]) be the set of cluster pairs
(Γ1

b ,Γ
2
b) satisfying:

(i) Γi
b ⊆ H0,l for i = 1, 2.

(ii) max {Γ1
b ∩H0} = max {Γ2

b ∩H0} = {0} .
(iii) Γ1

b ∩Hl = {w} and Γ2
b ∩Hl = {z}.

(iv) Γ1
b ⊆ w − Cδ and Γ2

b ⊆ z− Cδ.
(v) ∀k = 1, . . . , l − 1, Hk is not a cone cut line for (Γ1

b ,Γ
2
b) in H0,l (irreducibility).

For each such pair of clusters, with a slight abuse of notation we proceed to denote
by {Γ1

b ,Γ
2
b} the E−

0,l × E−
0,l-measurable event that

{
Cl−0,l(0,w) = Γ1

b

}
×
{
Cl−0,l(0, z) = Γ2

b

}
.

Finally let:

Fb =
⋃

l > 1

⋃

w,z∈Hl

Fb([w, z])

In the sequel we define random steps σb = (ρb, ξ
1
b , ξ

2
b ) : Fb 7→ Z+ × Z2: If l > 0;

w = (l, w), z = (l, z) and (Γ1
b ,Γ

2
b) ∈ Fb ([w, z]), then

σb(Γ
1
b ,Γ

2
b) =

(
ρb, ξ

1
b , ξ

2
b

)
= (l, w, z) .

Bulk clusters. For l > 0 and w, z ∈ Hl, let F([w, z]) be the set of cluster pairs
(Γ1,Γ2) satisfying:
(i) Γi ⊆ H0,l for i = 1, 2.
(ii) Γ1 ∩H0 = Γ2 ∩H0 = {0}
(iii) Γ1 ∩Hl = {w} and Γ2 ∩Hl = {z}.
(iv) Γ1 ⊆ Cδ ∩ (w − Cδ) and Γ2 ⊆ Cδ ∩ (z− Cδ) .
(v) ∀k = 1, . . . , l − 1, Hk is not a cone cut line for (Γ1,Γ2) in H0,l (irreducibility).

For each such pair of clusters, with a slight abuse of notation we proceed to denote
by {Γ1,Γ2} the E−

0,l × E−
0,l-measurable event that

{
Cl−0,l(0,w) = Γ1

}
×
{
Cl−0,l(0, z) = Γ2

}
.

Finally let:

F =
⋃

l > 1

⋃

w,z∈Hl

F([w, z])

In the sequel we define random steps σ = (ρ, ξ1, ξ2) : F 7→ Z+ × Z2: If l > 0;
w = (l, w), z = (l, z) and (Γ1,Γ2) ∈ F ([w, z]), then

σ(Γ1,Γ2) =
(
ρ, ξ1, ξ2

)
= (l, w, z) .
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Terminal clusters. For l > 0 and w, z ∈ Hl, let Ff([w, z]) be the set of cluster pairs(
Γ1

f ,Γ
2
f

)
satisfying:

(i) Γi
f ⊆ H0,l for i = 1, 2.

(ii) Γ1
f ∩H0 = Γ2

f ∩H0 = {0}.
(iii) max

{
Γ1

f ∩Hl

}
= {w} and max

{
Γ2

f ∩Hl

}
= {z}.

(iv) Γ1
f ⊆ Cδ and Γ2

f ⊆ Cδ.
(v) ∀k = 1, . . . , l− 1, Hk is not a cone cut line for

(
Γ1

f ,Γ
2
f

)
in H0,l (irreducibility).

For each such pair of clusters, with a slight abuse of notation we proceed to denote
by
{
Γ1

f ,Γ
2
f

}
the E0,l × E0,l-measurable event that

{
Cl0,l(0,w) = Γ1

f

}
×
{
Cl0,l(0, z) = Γ2

f

}
.

Finally let:

Ff =
⋃

l > 1

⋃

w,z∈Hl

Ff([w, z], )

In the sequel we define random steps σf =
(
ρf , ξ

1
f , ξ

2
f

)
: Ff 7→ Z+ × Z2: If l > 0;

w = (l, w), z = (l, z) and
(
Γ1

f ,Γ
2
f

)
∈ Ff ([w, z]), then

σf(Γ
1
f ,Γ

2
f) =

(
ρf , ξ

1
f , ξ

2
f

)
= (l, w, z) .

3.3. Construction of the effective random walk. Let us fix:
1) A pair of intial clusters

(
Γ̃1

b , Γ̃
2
b

)
∈ Fb.

2) A sequence of pairs of clusters
(
(Γ̃1

k, Γ̃
2
k)
)

k > 1
⊂ F .

3) A pair of terminal clusters
(
Γ̃1

f , Γ̃
2
f

)
∈ Ff .

For n > 0 and v = (0, v), x = (0, x) we construct n-step trajectories of the induced
effective random walk which starts at {v, x} as follows: By definition,

S0
∆
= (T0, V0, X0) = (0, v, x), Sk

∆
= (Tk, Vk, Xk) = S0 +

k∑

1

σl,

Sb
k

∆
= (T b

k , V
b
k , X

b
k) = σb + Sk, Sf

k

∆
= (T f

k , V
f
k , X

f
k ) = Sk + σf ,

Sbf
n

∆
= (T bf

n , V bf
n , Xbf

n ) = σb + Sn + σf ,

(3.4)

Above,

σb = σb

(
Γ̃1

b , Γ̃
2
b

)
, σk = σ

(
Γ̃1

k, Γ̃
2
k

)
and σf = σf

(
Γ̃1

f , Γ̃
2
f

)
.

Let N > 0, u, y ∈ HN such that Sbf
n = (N, u, y). Set also u = (N, u), y = (N, y). In

this notations, S0, S
b
0, S

b
1, . . . , S

b
n, S

bf
n = Sb

n + σf describes interpolated trajectories
through cone cut points of the simultaneous irreducible decomposition of pair of
clusters,

Γ1
b ∪ Γ1

1 ∪ · · · ∪ Γ1
n ∪ Γ1

f and Γ2
b ∪ Γ2

1 ∪ · · · ∪ Γ2
n ∪ Γ2

f , (3.5)
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where the induced clusters are defined as follows:

(
Γ1

b ,Γ
2
b

)
=
(
v + Γ̃1

b , x + Γ̃2
b

)
,

(
Γ1

k,Γ
2
k

)
=
(
(T b

k−1, V
b
k−1) + Γ̃1

k, (T b
k−1, X

b
k−1) + Γ̃2

k

)
,

(
Γ1

f ,Γ
2
f

)
=
(
(T b

n, V
b
n ) + Γ̃1

f , (T b
n, X

b
n) + Γ̃2

f

)
.

Comparing (3.5) with (3.3) we see that in particular the above procedure generates
distinctly all the cluster pairs which contribute to the events A ([v, x], [u, y]) (and
which have at least two cone cut lines, of course).

Let us indroduce now the weights,

B̃v,x
p

(
Γ1

b ∪ Γ1
1 ∪ · · · ∪ Γ1

n ∪ Γ1
f ; Γ

2
b ∪ Γ2

1 ∪ · · · ∪ Γ2
n ∪ Γ2

f

)

= ⊗Bp

({
Γ̃1

b , Γ̃
2
b

}) n∏

1

⊗Bp

({
Γ̃1

k, Γ̃
2
k

})
⊗ Bp

({
Γ̃1

f , Γ̃
2
f

})
,

and the events,

Ã([v, x], [u, y]) =
⋃

n > 1

{
Sbf

n = (N, u, y); Γ1
k ∩ γup(Γ2

k) = ∅ for k = b, 1, . . . , n, f
}
.

(3.6)
Then the irreducibility of decomposition (3.3) together with (3.2) imply that we can
express the probability of percolation event A([v, x], [u, y]) under ⊗Bp asymptotically

as the probability of “clusters-random-walk” event Ã([v, x], [u, y]) under B̃v,x
p :

⊗ Bp (A([v, x], [u, y]))
(
1 +O

(
e−ν7N

))
= B̃v,x

p

(
Ã([v, x], [u, y])

)
. (3.7)

Furthermore, if we set

Rbf
n

∆
=
{
Xb

0 > V b
0

}
∩
{
Xb

k > V b
k : k = 1, . . . , n

}
∩
{
Xbf

n > V bf
n

}
(3.8)

we can write

B̃v,x
p

(
Ã([v, x], [u, y])

)

=
∑

n > 1

B̃v,x
p

(
Sbf

n = (N, u, y) ; Rbf
n

)
B̃v,x

p

(
Ã([v, x], [u, y])

∣∣Sbf
n = (N, u, y) ; Rbf

n

)
.

(3.9)

We shall argue that the conditional probability above leads only to finite corrections,

whereas sharp asymptotics are inherited from B̃v,x
p

(
Sbf

n = (N, u, y) ; Rbf
n

)
terms.

This is a reduction to the effective random walk picture as described in Subsection 1.

3.4. Normalized step distributions.
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Bulk steps. We shall now fix the steps of our effective random walk, making their
distribution proper and check that this distribution satisifies conditions (P1)-(P3)
of Subsection 1 whence we can use Theorem B. Let us introduce yet another prob-
ability measure Pv,x under which (σk)k > 1 form an infinite collection of independent
random variables that share a common distribution defined as follows:

Pv,x (σ = (r, x1, x2)) = e2rτpB̃v,x
p (σ1 = (r, x1, x2)) = e2rτp

∑

(Γ1,Γ2)

⊗Bp

({
Γ1,Γ2

})
,

(3.10)
where the summation is over all pairs (Γ1,Γ2) ∈ F([(r, x1), (r, x2)]). We claim that
σ is a proper random variable under Pv,x:

∑

(r,x1,x2)

Pv,x (σ = (r, x1, x2)) = 1. (3.11)

Recall the notation tp = (τp, 0) = τp(e1). Thus rτp equals to 〈tp, (r, xi)〉 for i = 1, 2.

For l 6 r let us say that two points w ∈ Hl and z ∈ Hr are c-connected, w
c←→ z if

Cl−l,r(w, z) 6= ∅ and, in addition,

Cl−l,r(w, z) ⊆ (w + Cδ) ∩ (z− Cδ) .

The event
{

w
c←→ z

}
is E−

l,r-measurable. The results of [CI, CIV3] imply the fol-

lowing consequence of (2.13) : There exists a neighbourhood U of tp ∈ ∂Kp, such
that for every t ∈ U ,

∑

z

e〈t,z〉 Bp

(
0

c←→ z

)
< ∞ ⇐⇒ t ∈ int (Kp) .

As a result, for every t ∈ int (Kp) ∩ U , there exists α > 0, such that
∑

z∈Hr

e〈t,z〉 Bp

(
0

c←→ z

)
. e−αr. (3.12)

Conversly, for every t ∈ ext (Kp) ∩ U , there exists α > 0, such that

∑

z∈Hr

e〈t,z〉 Bp

(
0

c←→ z

)
& eαr. (3.13)

At this point we can readily extend these convergence results to double clusters:
There exists a possibly smaller neighbourhood V ⊆ U of tp ∈ ∂Kp, such that for
every t ∈ V,

φ(t)
∆
=
∑

r>0

∑

w,z∈Hr

e〈t,w+z〉 ⊗ Bp

(
0

c←→ w, 0
c←→ z

)
< ∞ ⇐⇒ t ∈ int (Kp) .

(3.14)
Define now,

g(t) =
∑

r>0

∑

w,z∈Hr

e〈t,w+z〉
∑

(Γ1,Γ2)

⊗Bp

({
Γ1,Γ2

})
,
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where for each {w, z} fixed the last summation is over all irreducible pairs (Γ1,Γ2) ∈
F([w, z]). By (3.2) g converges everywhere on V (once V is small enough). On the
other hand, for t ∈ V ∩ int (Kp), functions φ and g satisfy the renewal relation,

φ(t) =
g(t)

1− g(t) .

Consequently g(t) = 1 is a parametrization of ∂Kp ∩ V. (3.11) follows. �
The distribution of σ in (3.10) is clearly symmetric in the sense of condition (P3)
of Subsection 1. Condition (P1) follows from Property (iv) of bulk clusters, as
described in Subsection 3.2. Finally, condition (P2) is satisfied by virtue of (3.2).

Initial and terminal steps. Analogously, we define σb, σf to have the following dis-
tribution under Pv,x independently of all other random variables:

Pv,x(σb = (r, x1, x2))
∆
= Qb(r, x1, x2)

∼
= e2rτpB̃v,x

p (σb = (r, x1, x2))

= e2rτp
∑

(Γ1
b ,Γ2

b)

⊗Bp

({
Γ1

b ,Γ
2
b

})
(3.15)

and, respectively

Pv,x(σf = (r, x1, x2))
∆
= Qf (r, x1, x2)

∼
= e2rτpB̃v,x

p (σf = (r, x1, x2))

= e2rτp
∑

(Γ1
f ,Γ2

f)

⊗Bp

({
Γ1

f ,Γ
2
f

})
, (3.16)

where the summation is over all initial irreducible pairs (Γ1
b ,Γ

2
b) ∈ Fb ([(r, x1), (r, x2)])

and, respectively, over all terminal irreducible pairs
(
Γ1

f ,Γ
2
f

)
∈ Ff ([(r, x1), (r, x2)]).

By definition the
∼
= relations in (3.15) (3.16) are tuned in such a way that both Qb

and Qf become probability measures. In addition, as it follows from (3.2), both
display exponential tails. In particular,

∑

r

∑

x1,x2

Qb(r, x1, x2) = 1 and
∑

r

∑

x1,x2

Qf (r, x1, x2) = 1 (3.17)

converge exponentially fast in all the arguments.

Trajectories. To complete the setup, we carry over to Pv,x the definitions in (3.4)
and note that under Pv,x, (Sk)k > 0 and (σl)l > 1 satisfy the conditions preceding
Theorem B. Moreover, the following holds:

e2NτpB̃v,x
p

(
(Sb

0, S
b
1, . . . , S

b
n, S

bf
n ) = s

) ∼
= Pv,x

(
(Sb

0, S
b
1, . . . , S

b
n, S

bf
n ) = s

)
(3.18)

for any trajectory s ending at time N . We shall use P as a short-hand notation for
P0,0.

Remark 3.2. We would like to argue that Qb(r, x1, x2) = Qf (r,−x1,−x2). This
does not follow immediately from symmetry with respect to reflection, since in fact,
events in summation (3.15) are E−

0,r × E−
0,r-measurable while events in summation
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(3.16) are from E0,r × E0,r - hence not entirely symmeteric. Nevertheless, ⊗Bp-
probabilities of corresponding events in the two summations differ only by a constant
factor (1− p)4 and thus after the

∼
= normalization this difference disappears.

3.5. Proof of Theorem 2.2. Let us go back to (3.9). Let µ = Eρ be the ex-
pected value of the time coordinate displacement along an irreducible step (under
distribution (3.10)). First of all note that one can restrict attention to values of n
which satisfy |N − nµ| . √N logN . Indeed, as it easily follows from local limit
computations for K sufficiently large,

∑

n:|N−nµ|>K
√

N log N

P (ρ1 + · · ·+ ρn = N) = o

(
1

N2

)
, (3.19)

which is negligible with respect to the right hand side of (2.9).
For n-s in the band nµ ∈ [N −K√N logN,N +K

√
N logN ] and |v|, |x|, |u|, |y| .

logN we proceed as follows:

Term B̃v,x
p

(
Sbf

n = (N, u, y);Rbf
n

)
. This is a purely random walk term. In view of

(3.18)

e2τpN B̃v,x
p

(
Sbf

n = (N, u, y);Rbf
n

) ∼
= Pv,x

(
Sbf

n = (N, u, y);Rbf
n

)

∼
=
∑

l,r>0

∑

w1<z1

∑

wn+1<zn+1

Qb(l, w1 − v, z1 − x)

× Pw1,z1

(
Sn = (N − r − l, wn+1, zn+1) ; R+

n

)

×Qf (r, u− wn+1, y − zn+1).

(3.20)

In view of the exponential tails of Qb and Qf and Remark 3.2, it is now a straight-
forward consequence of Theorem B that

∑

n

Pv,x

(
Sbf

n = (N, u, y);Rbf
n

)
∼ 1

N2

∑

l

∑

v′<x′

Qb(l, v
′ − v, x′ − x)U(x′ − v′)

×
∑

r

∑

u′<y′

U(y′ − u′)Qf (r, u− u′, y − y′)

∆
=

Ũ(x− v)Ũ(y − u)
N2

(3.21)

uniformly in |v|, |x|, |u|, |y| . logN .

Term B̃v,x
p

(
Ã([v, x], [u, y])

∣∣Sbf
n = (N, u, y) ; Rbf

n

)
. We would like to argue that un-

der Rbf
n the trajectories of upper and lower random walks are repulsed and, conse-

quently, the additional constraint Cl0,N(v, u)∩γup(Cl0,N(x, y)) imposed by the event

Ã([v, x], [u, y]) actually applies only close to the H0 and HN lines and, furthermore,
this constraint asymptotically decouple. In fact, we claim:
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Lemma 3.3. There exists a positive function H on Z of an at most linear growth;
H(z) . z, such that

B̃v,x
p

(
Ã([v, x], [u, y])

∣∣Sbf
n = (N, u, y) ; Rbf

n

)
∼ H(x− v)H(y − u) (3.22)

uniformly in |v|, |x|, |u|, |y| . logN and in |nµ−N | . √
N logN .

Lemma 3.3 is proved in the concluding Section 5.

Combining (3.22), (3.21), (3.9) and (3.7) we recover (2.9) with G(·) = H(·)Ũ(·). �

4. Effective random walk

Let σk = (ρk, ξ
1
k, ξ

2
k) be a sequence of i.i.d random variables on N × Z2 which

satisfy conditions (P1)-(P3) of Subsection 1. In the sequel we shall stick to the
notation introduced before, in particular, the event R+

n is the one defined in (1.6)
and

Sn = (Tn, Vn, Xn) = S0 +
∑

kn

σk,

is the trajectory of the random walk. We use Pv,x for the distribution of the random
walk with S0 = (0, v, x). Set,

rn(t; v, x; u, y) = Pv,x(Sn = (t, u, y),R+
n ).

In this notation the left-hand side of (1.7) equals to
∑

n

rn(N ; v, x; u, y).

Let pn(t; v, x; u, y) = Pv,x(Sn = (t, u, y)) be the transition probabilities of the un-
constrained walk Sn. The main computation, which is built upon combinatorial
techniques developed in [AD, BJD] (and is essentially contained in those papers),
relates rn and pn: Let µ = Eρ be the average length of a step along the time axis.

For the rest of the section fix a function δ : N 7→ R+ of an almost linear growth,

∀ α > 0 lim
n→∞

δ(n)

n1−α
=∞ but lim

n→∞

δ(n)

n
= 0. (4.1)

Theorem 4.1. Assume (P1)-(P3). There exists a positive function U on N of an
at most linear growth; U(z) . z, such that for every ǫ ∈ (0, 1/4),

rn(t, v, x, u, y) ∼ U(x− v)U(y − u)
n

pn(t; v, x; u, y), (4.2)

uniformly in x > v, y > u such that max {|u− v|, |y − x|, |t− nµ|} . δ(n) and such
that max {x− v, y − u} . nǫ.

Note that in the regime |t−nµ| & δ(n) the function rn(t, v, x, u, y) has an at least
stretched exponential decay. Thereby, the target claim (1.7) of Theorem B routinely
follows then from (4.2), usual local limit description of pn and Gaussian summation
formula.
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Remark 4.2. There is nothing sacred in condition (4.1). It just simplifies the
formulas involved in the regime we actually need to apply them: However, since
random variables σk have exponential tails and since below we shall rely only on the
symmetries of Zn = Xn − Vn but not on the symmetries of each of the two random
walks involved, which in particular enables tiltings of the type λ1Tn + λ2(Xn + Vn),
we could have readily extended (4.2) to the case of max {|u− v|, |y − x|, |t− nµ|} <
νn (for some fixed positive ν) but with, of course, appropriately modified renewal
functions .

We shall start by analyzing the difference Zn = Xn − Vn, which is in itself a
one dimensional random walk with symmetric steps having exponentially decaying
distributions. The event R+

n can be recorded in terms of Zn as

R+
n = {Zk > 0 for k = 1, . . . , n} .

Let Pw = P( · |Z0 = w), qn(·, ·) is the transition function of Zn, and let

un(w, z) = Pw

(
Zn = z;R+

n

)
.

Then,

Theorem 4.3. There exists a positive function U on N of an at most linear growth;
U(z) . z, such that for every ǫ ∈ (0, 1/2):

un(w, z) ∼
U(w)U(z)

n
qn(w, z), (4.3)

uniformly in w, z such that 0 < w, z . nǫ.

A proof (which is based on [AD, BJD]) will be given in Subsection 4.1. The
extension to Theorem 4.1 will be explained in Subsection 4.2. Finally, Section 5 is
devoted to proofs of Proposition 5.1 and Lemma 3.3.

4.1. One dimensional random walk Zn conditioned to stay positive.

Ladder variables and Alili-Doney representation. In the sequel P is a shorthand
notation for P0, qn(z) is a shorthand for qn(0, z).

Let us say that n is a strictly ascending ladder time if,

L+
n = {Zn > Zk ; k = 0, ...., n− 1} (4.4)

happens. A standard time reversal argument (c.f. [FL2]; XII, 2) implies that under
P the events L+

n ∩{Zn = z} and R+
n ∩{Zn = z} have the same probability for every

z > 0.
Similarly, let us say that n is a non-strictly ascending ladder time if,

L0
n = {Zn > Zk ; k = 0, ...., n− 1} . (4.5)

happens. Then, under P and for every z > 0, the event L0
n∩{Zn = z} has the same

probability as the event R0
n ∩ {Zn = z}, where,

R0
n = {Zk > 0 for k = 0, . . . , n} .
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Define

N+(z) = #
{
m > 0 : Zm < z and L+

m

}

N0
n(z) = #

{
m = 0 . . . n : Zm 6 z and L0

m

}
; N0(z) = lim

n→∞
N0

n(z).
(4.6)

The results of [AD, BJD], which are based on a beautiful generalization of Feller’s
combinatorial path surgery lemma, state:

un(z)
∆
= P

(
Zn = z,R+

n

)
= P

(
Zn = z,L+

n

)
=

1

n
E
(
N+(z);Zn = z

)

and

u0
n(z)

∆
= P

(
Zn = z,R0

n

)
= P

(
Zn = z,L0

n

)
=

1

n
E
(
N0

n(z);Zn = z
)
,

(4.7)

where the first identity holds for all z > 0, whereas the second identity holds for
every z > 0.

Apriori bounds. Combinatorial identities (4.7) readily yield a priori bounds on un

and u0
n in terms of the unconstrained transition function qn. Indeed, since, by

construction, N+(z) 6 z, we trivially infer:

un(z) 6
z

n
qn(z). (4.8)

In the case of non-strict ladder variables note that N0(z) can be represented as

N0(z) =

N+(z+1)∑

0

ηl, (4.9)

where ηl are i.i.d. geometric random variables, independent of N+(z + 1), with
probability of failure

χ = P (∃n : Zn = 0 and Zm < 0 for m = 1, . . . n− 1) . (4.10)

Using Hölder inequality with a > 1, a∗ = 1/(1− 1/a), we get

u0
n(z) 6

1

n

(
E
(
N0

n(z)
)a)1/a

(qn(z))1/a∗

6
1

n
(z + 1) (Eηa)1/a (qn(z))1/a∗

(4.11)

which gives for a fixed a

u0
n(z) .

z + 1

n
(qn(z))1/a∗

. (4.12)

As an a priori bound this fits in with our computations perfectly well once a∗ is
sufficiently close to one. Using standard local limit results, let us record (4.8) and
(4.12) as

un(z) .
z

n3/2
and u0

n(z) .
z + 1

n1+1/2a∗ . (4.13)
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Asymptotics of un(z) and u0
n(z). It is only a short step now to derive uniform as-

ymptotic description of un and u0
n: Let ǫ ∈ (0, 1/2). We claim that uniformly in

0 6 z . nǫ,

E
(
N+(z + 1);Zn = z + 1

) 1−χ∼ U(z + 1)qn(z + 1)

1− χ
1∼ E

(
N0

n(z);Zn = z
)
, (4.14)

where U(z) is the renewal function

U(z) = EN+(z) =
∑

r<z

∑

m

P
(
Zm = r;L+

m

)
=
∑

r<z

∑

m

um(r). (4.15)

Alternatively, in view of (4.9), the renewal function U could be defined via,

1

1− χU(z + 1) = EN0(z) =
∑

r 6 z

∑

m

P
(
Zm = r;L0

m

)
=
∑

r 6 z

∑

m

u0
m(r).

Let us prove (4.14). Consider first the left-most term in (4.14):

E
(
N+(z + 1);Zn = z + 1

)
=
∑

m 6 n

∑

r 6 z

P
(
Zm = r;L+

m

)
qn−m(z − r + 1).

Fix β ∈ (2ǫ, 1) and split the above sum into three terms with m ∈ [0, nβ], m ∈
(nβ, n− nβ) and m ∈ [n− nβ, n].

Recall that we consider z . nǫ. Therefore, if m ∈ [0, nβ], then qn−m(z − r + 1) ∼
qn(z + 1). Accordingly,
∑

m 6 nβ

∑

r 6 z

P
(
Zm = r;L+

m

)
qn−m(z − r + 1)

1∼ qn(z + 1)
∑

m 6 nβ

∑

r 6 z

P
(
Zm = r;L+

m

)
.

(4.16)

Now by (4.13) ∑

m>nβ

∑

r 6 z

P
(
Zm = r;L+

m

)
. (z + 1)2n−β/2.

Since U(z) ∼ z (by the Law of Large Numbers) and β > 2ǫ it follows that
∑

m 6 nβ

∑

r 6 z

P
(
Zm = r;L+

m

) 1∼ U(z + 1) (4.17)

uniformly in z . nǫ. Hence the right term in (4.16) is

1∼ U(z + 1)qn(z + 1) (4.18)

It remains to show that the remaining two sums are negligible. But this follows
from our a priori bounds (4.13) and from usual local CLT bounds on transition
probabilities of the unconstrained random walk: For m ∈ (nβ , n− nβ),

∑

m∈(nβ ,n−nβ)

∑

r 6 z

P
(
Zm = s;L+

m

)
qn−m(z − r + 1) .

∑

m∈(nβ ,n−nβ)

(z + 1)2

m3/2(n−m)1/2

.
(z + 1)2

n(1+β)/2
.

(4.19)
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On the other hand, for m ∈ [n− nβ, n],

∑

m∈[n−nβ ,n]

∑

r 6 z

P
(
Zm = s;L+

m

)
qn−m(z − r + 1) .

∑

m∈[n−nβ ,n)

(z + 1)2

m3/2(n−m)1/2

.
(z + 1)2

n(3−β)/2
,

(4.20)

and the right hand sides of (4.19) and (4.20) are indeed asymptotically negligible
compared to (4.14).

The right asymptotic relation in (4.14) follows along exactly the same line of
reasoning using a priori bound (4.13) with a∗ sufficiently close to 1. �

Proof of Theorem 4.3. Any path (Z0, . . . , Zn) contributing to un(w, z) certainly
achieves its minimal value r = min {Zl, l = 0, . . . , n}. Since Zn has a symmetric
distribution it is enough to derive asymptotics of un(w, z) for w 6 z. In this case,
0 < r 6 w. A decomposition with respect to the first time when the minimum is
hit leads to the following representation,

un(w, z) = u0
n(z − w) +

n∑

m=0

w−1∑

r=1

um(w − r)u0
n−m(z − r). (4.21)

By (4.7) and (4.14),

u0
n(z − w)

1∼ U(z − w + 1)qn(z − w)

(1− χ)n
.

As far as the sum in (4.21) is concerned let us fix β ∈ (2ǫ, 1) and consider three
regimes: m ∈ [0, nβ], m ∈ (nβ, n− nβ) and m ∈ [n− nβ , n]. In the middle region,

um(w − r)u0
n−m(z − r) .

(w − r)(z − r + 1)

m3/2(n−m)1+1/2a∗ .

As a result, the contribution of m ∈ (nβ , n− nβ) is . zw2

n(3+β)/2a∗ , which is negligible
compared to (4.3) if β > 2ǫ and a∗ is chosen sufficiently close to 1.

For m 6 nβ , we substitute u0
n−m(z−r) 1∼ U(z−r+1)qn(z−w)/(1−χ)n. Likewise,

in the regime m > n−nβ we substitute um(w− r) 1∼ U(w− r)qn(z−w)/n. Putting
things together, we conclude (see (4.15)):

un(w, z)
1∼

qn(z − w)

n



U(z − w + 1)

1− χ +
∑

m 6 nβ

w−1∑

r=1

[
um(w − r)U(z − r + 1)

1− χ + u0
m(z − r)U(w − r)

]



(4.22)

By (4.13) and U(z) ∼ z

∑

m>nβ

w−1∑

r=1

[
um(w − r)U(z − r + 1) + u0

m(z − r)U(w − r)
]

. U(z)U(w)nǫ−β/2a∗
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Consequently, once β > 2ǫ, a∗ close to 1, we can drop the constraint m 6 nβ in the
sum on the right hand side of (4.22). By definition (see (4.15)),

∑
m um(w − r) =

U(w − r + 1)− U(w − r) and, similarly,

∑

m

u0
m(z − r) =

U(z − r + 1)− U(z − r)
1− χ .

As a result we get un(w, z)
1∼

qn(z − w)

(1− χ)n

{
U(z − w + 1)

+

w−1∑

r=1

[U(w − r + 1)− U(w − r)]U(z − r + 1) + [U(z − r + 1)− U(z − r)]U(w − r)
}

=
qn(z − w)

(1− χ)n

{
U(z − w + 1) +

w−1∑

r=1

(U(w − r + 1)U(z − r + 1)− U(z − r)U(w − r))
}

=
qn(z − w)

(1− χ)n
U(w)U(z),

(4.23)

where on the last step we have used an obvious relation U(1) = 1. �

Remark 4.4. Theorem 4.3 yields sharp asymptotics whenever 0 6 w, z 6 nǫ. By
using aprioi bounds (4.13), one can eaisly obtain from (4.21) the following a priori
bound on un(w, z) which holds uniformly in n, w > 0, z > 0: Fix a∗ to be sufficiently
close to 1. Then,

un(w, z) .
wzmin{w, z}
n1+1/2a∗ . (4.24)

4.2. Adjustments for Sn. Let us return to the coupled RW Sn = (Tn, Vn, Xn).
Recall that Zn = Xn− Vn. As in the previous subsection the events R+

n and R0
n are

formulated in terms of Zn. As usual P stands for P0,0

Alili-Doney representation. Since the representation of [AD] is based on a com-
binatorial identity related to a surgery of Zn-paths, this part has an immediate
generalization to the full Sn-case:

rn(t; u, y)
∆
= P

(
Sn = (t; u, y);R+

n

)
=

1

n
E
(
N+(y − u);Sn = (t; u, y)

)
; y > u

and

r0
n(t; u, y)

∆
= P

(
Sn = (t; u, y);R0

n

)
=

1

n
E
(
N0

n(y − u);Sn = (t; u, y)
)

; y > u.

(4.25)

Apriori bounds. In place of (4.8), (4.12) we now have

rn(t; u, y) 6
y − u
n

pn(t; u, y), (4.26)
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and

r0
n(t; u, y) .

y − u+ 1

n
(pn(t; u, y))1/a∗

, (4.27)

where we use a shorthand notation pn(t; u, y) = pn(t; 0, 0; u, y) and a∗ is a fixed
number as close to 1 as needed. This follows by identical arguments.

Asymptotics of rn(t; u, y) and r0
n(t; u, y). Fix ǫ ∈ (0, 1/4). We shall prove:

rn(t; u, y)
1∼ U(y − u)

n
pn(t; u, y) and r0

n(t; u, y)
1∼ U(y − u+ 1)

n(1− χ)
pn(t; u, y),

(4.28)
uniformly in

|u|, |y|, |t− nµ| . δ(n) and (4.29)

|u− y| . nǫ. (4.30)

However, let us first assume, in place of (4.29) the stronger condition that

ETn = nµ = t and EVn = EXn = u. (4.31)

To permit the latter, we no longer suppose axes-symmetry for the distribution of
(ξ1, ξ2) as required by property (P3). We still, nonetheless, assume diagonal sym-
metry and of course (P1) and (P2).

Set z = y − u. Then, starting with rn,

E
(
N+(y − u);Sn = (t; u, y)

)

∑

m 6 n

z−1∑

r=1

∑

xm−vm=r

∑

s

P
(
Sm = (s; vm, xm);L+

m

)
pn−m(t− s; vm, xm; u, y)

=
∑

m 6 n

z−1∑

r=1

∑

x1−v1=r

∑

s

rm(s; vm, xm)pn−m(t− s; vm, xm; u, y),

(4.32)

where ladder event L+
m are still defined in terms of Z-process.

Now, if ETn = t , EVn = EXn = u and |y − u| . nǫ hold (ǫ < 1/4), then

pn(t; u, y) ∼ n−3/2. (4.33)

As in the one-dimensional case we shall split the sum over m into three terms
according to m 6 nβ , m ∈ (nβ, n− nβ) and n−m 6 nβ with β ∈ (2ǫ, 1/2).
• In the region m 6 nβ we may restrict attention to |xm|, |vm|, s . nβ . Since we
choose β < 1/2,

pn−m (t− s; vm, xm; u, y)
1∼ pn(t; u, y) (4.34)
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uniformly in the remaining range of parameters. Hence, the corresponding contri-
bution to the right hand-side of (4.32) is,

1∼ pn(t; u, y)
∑

m 6 nβ

z−1∑

r=1

∑

xm−vm=r

∑

s

P
(
Sm = (s; vm, xm);L+

m

)

1∼ pn(t; u, y)
∑

m 6 nβ

z−1∑

r=1

P
(
Zm = r;L+

m

) 1∼ pn(t; u, y)U(z).

(4.35)

• In the region nβ < m < n− nβ consider (4.26),
∑

vm

∑

s

rm(s; vm, vm + r)pn−m(t− s; vm, vm + r; u, y)

.
r

m

∑

vm

∑

s

pm(s; vm, vm + r)pn−m(t− s; vm, vm + r; u, y)

Define µT = t/n = Eρ and µX = u/n = Eξi. Set φl(x) = min {|x|, x2/l} Since Sl

obeys classical local limit description under Cramer’s condition, there exists ν > 0,
such that,

pl(a; b, c) .
1

l3/2
exp {−ν (φl(a− lµT) + φl(b− lµX) + φl(c− lµX))} , (4.36)

uniformly in l, a, b and c. Consequently,

∑

vm

∑

s

pm(s; vm, r+vm)pn−m(t−s; vm, r+vm; u, y) .
1

m3/2(n−m)3/2
min {m,n−m} ,

(4.37)
as it follows from Gaussian summation formula. Accordingly, the contribution to
(4.32) which comes from the region nβ < m < n− nβ is,

. z2
n−nβ∑

m=nβ

min {m,n−m}
m5/2(n−m)3/2

∼ z2

nβ/2

1

n3/2
∼ z2

nβ/2
pn(t; u, y). (4.38)

Since z . U(z) , the latter expression is negligible with respect to U(z)pn(t; u, y) as
soon as z . nǫ ≪ nβ/2. This explains the restrictions on β.

• In the region n − m 6 nβ we are entitled to restrict attention to |u − vm|, |y −
xm|, t− s . nβ . In such a case, pm(s; vm, xm)

1∼ pn(t; u, y). On the other hand,

∑

vm

∑

s

pn−m(t− s; vm, vm + r; u, v) .
1

(n−m+ 1)1/2
. (4.39)

Consequently the corresponding contribution to (4.32) is . z2pn(t; u, y)nβ/2−1, which
is negligible as soon as ǫ+ β/2 < 1, which is the case if β > 2ǫ

The r0
n-case could be worked out in a completely similar fashion once a∗ in (4.27)

is chosen to be sufficiently close to one. This proves (4.28) with condition (4.31) in
place of (4.29) .
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Tilts by λ = (λT, λV, λV). We no longer assume (4.31), but rather (4.29), (4.30) and,
of course, (P1)-(P3). Given n, u, y and t satisfying (4.29), (4.30), let us tilt σ by
an appropriate λ = λ(n, t, u) = (λT, λV, λX) with λV = λX , such that the tilted
distribution Pλ of σ = (ρ, ξ1, ξ2):

Pλ (σ = (a, b, c))
∆
=

eλTa+λX(b+c)

Ee〈λ,σ〉 P (σ = (a, b, c)) (4.40)

satisfies Eλσ = (t/n, u/n, u/n). Note that in view of the symmetries of the original
P, exponential tails of σ and in view of (4.1) such tilting is always possible and as
n→∞, |λ| = o(1) uniformly in the range of the parameters involved.

On the other hand, under Pλ for any λ = (λT, λV, λV) close enough to zero,
the distribution of σ satisfies properties (P1), (P2) and the diagonal symmetry in
property (P3). Consequently, if we let tλ = nEλρ, uλ = nEλξ

1 = nEλξ
2:

rn,λ(tλ; uλ, y)
1∼ Uλ(y − uλ)

n
pn,λ(tλ; uλ, y), (4.41)

r0
n,λ(tλ; uλ, y)

1∼ Uλ(y − uλ + 1)

n(1− χλ)
pn,λ(tλ; uλ, y) (4.42)

uniformly in 0 6 y − uλ . nǫ with rn,λ, r
0
n,λ, Uλ, χλ defined as in (4.25), (4.15),

(4.10), but with Pλ, Eλ in place of P, E.
Furthermore, if we fix κ > 0 sufficiently small. then the bounds (4.26), (4.27) and

(4.33)–(4.39) (with u = uλ, t = tλ) also hold uniformly for the whole family of tilted
measures {Pλ}|λ| 6 κ. Therefore, we infer that (4.41), (4.42) also hold uniformly in

|λ| 6 κ.
Since, in addition,

pn,λ(t; u, y)

rn,λ(t; u, y)
≡ pn(t; u, y)

rn(t; u, y)
and

pn,λ(t; u, y)

r0
n,λ(t; u, y)

≡ pn(t; u, y)

r0
n(t; u, y)

,

it suffices to check:

Proposition 4.5.

(1) As λ→ 0, χλ → χ0 = χ

(2) As λ→ 0, Uλ(z)
1∼ U0(z) = U(z) uniformly in z > 0.

Proof. To avoid ambiguities let us fix κ > small enough and consider λ =

(λT , λV , λV ) with |λ| ∆
=
√
λ2

T + λ2
V 6 κ. For such λ we define tilted distributions Pλ

as in (4.40).
For χλ, write:

χλ =
∑

n > 1

Pλ (Zn = 0, Zk < 0; k = 1, . . . , n− 1) .
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For each m fixed,

m∑

n=1

Pλ (Zn = 0, Zk < 0; k = 1, . . . , n− 1) 6 χλ

6

m∑

n=1

Pλ (Zn = 0, Zk < 0; k = 1, . . . , n− 1) + Pλ(R+
m).

(4.43)

By (4.8)

Pλ(R+
m) 6

1

m
Eλ max {Zm, 0} ,

which is . 1/
√
m uniformly in m and |λ| 6 κ. On the other hand, for every n fixed

the map λ 7→ Pλ (Zn = 0, Zk < 0; k = 1, . . . , n− 1) is evidently continuous. This
proves (1).

In order to prove (2) consider the following probability distribution on Z+,

fλ(r) = Pλ (∃ m : Z1, . . . , Zm−1 6 0 and Zm = r) .

The renewal function Uλ is recovered from fλ in the following way: Define uλ(0) = 1
and

uλ(z) =

z∑

r=1

fλ(r)uλ(z − r). (4.44)

Then, Uλ(z) =
∑z−1

0 uλ(z).
We claim that if κ is sufficiently small then the family of distributions {fλ}|λ| 6 κ

has uniform exponential tails. Indeed, since under {Pλ}|λ| 6 κ the distribution of
steps Zi has uniform exponential tails there exists c1 > 0 such that

fλ(r) 6 e−c1r
m∑

n=1

Pλ

(
R0

n−1

)
+ Pλ

(
R0

m

)
. e−c1r

√
m+

1√
m
.

It remains to take m = m(r) = ec1r.
Standard Renewal Theory reinforced with such uniform exponential decay implies

that as r →∞,

uλ(r)→
1

µ+
λ

(4.45)

uniformly exponentially fast (on |λ| 6 κ) , where µ+
λ is the expected value of the

strict ladder height associated with Zn, namely: µ+
λ =

∑
r rfλ(r). . Since, uniform

exponential tails of {fλ} and continuity of λ 7→ fλ(r) for all r imply that µ+
λ is

continuous on |λ| 6 κ and since λ 7→ uλ(z) is trivially continuous for every z fixed,
(2) follows. �
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Proof of (4.2). It is enough to consider only the case of 0 < w
∆
= x− v 6 y−u ∆

= z.
Decomposing with repect to the position of the first global minimum of Zn, we arrive
to the following generalization of (4.21),

rn(t; v, x; u, y) = r0
n(t; u− v, y − x)

+
n−1∑

m=1

w−1∑

r=1

t−1∑

s=1

∑

xm−vm=r

r̂m(s; v − vm, x− xm)r0
n−m(t− s; u− vm, y − xm),

where r̂m is defined exactly as rm but for the reversed walk Ŝm with i.i.d. steps,

σ̂k = (ρk,−ξ1
k,−ξ2

k). (4.46)

Note, however, that the distribution of Zn = Xn − Vn is always symmetric. In
particular Ẑn has the same renewal function U as Zn.

As before, we, applying if necessary appropriate tilts λ, may assume that (t, u−
v) = E(Tn, Vn) or, equivalently, that (t, v − u) = E(Tn, V̂n). Fix 2ǫ < β < 1/2 and
split the sum over m into three regions m 6 nβ , nβ < m < n−nβ and n−m 6 nβ.

• In the region m 6 nβ we can restrict attention to |vm− v|, |xm−x| and s all being
. nβ . Then, the second of (4.28) implies that

r0
n−m(t− s, u− vm, y − xm)

1∼ U(z − r + 1)

n(1− χ)
pn(t; u− v, y − x)

uniformly in r = 1, . . . , w − 1 and such s, vm and xm with xm − vm = r. On the
other hand, for every K > 0 fixed,
∑

s 6 Knβ

∑

|vm−v|,|xm−x| 6 nβ

xm−vm=r

r̂m(s; v− vm, x− xm)
1∼ P

(
Ẑm = w − r;L+

m

)
= um(w− r).

• Similarly, for n−m 6 nβ we may restrict attention to |u− vm|, |y− xm| and t− s
being . nβ and, accordingly, infer from the first of (4.28) that,

r̂m(s, v− vm, x− xm)
1∼ U(w − r)

n
p̂n(t; v− u, x− y) =

U(w − r)
n

pn(t; u− v, y− x),

whereas,
∑

t−s 6 Knβ

∑

|vm−u|,|xm−y| 6 nβ

xm−vm=r

r0
n−m(t− s; u− vm, y − xm)

1∼ P
(
Zm = z − r;L0

m

)
= u0

n−m(z − r).

• As in the one-dimensional case, a priori bounds (4.26) and (4.27) (applied with a∗

being sufficiently close to one) render the contribution of the middle sum negligible.

The rest of the proof is a repetition of (4.22), (4.23) and (4.2) follows. �
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4.3. Boundary steps and semi-infinite walks. Assume now that σb, σf are de-
fined as well and have distributions Qb (3.15) and Qf (3.16) under Pv,x. Since the
distribution Qb of the initial step and, respectively, the distribution Qf of the final
step have exponentially decaying tails it is straightforward to incorporate them into
Theorem 4.1. With the random walk notation of Subsection 3.3, set:

p̃n(t; v, x; u, y) = Pv,x

(
Sbf

n = (t, u, y)
)
,

and, accordingly,

r̃n(t; v, x; u, y) = Pv,x

(
Sbf

n = (t, u, y);Rbf
n

)
.

Then, by (4.2) and by the very same computation as in (3.21),

r̃n(t; v, x; u, y) ∼ Ũ(x− y)Ũ(y − u)
n

p̃n(t; v, x; u, y), (4.47)

uniformly in x > v, y > u such that max {|u− v|, |y − x|, |t− nµ|} . δ(n) and such

that max {x− v, y − u} . nǫ, with Ũ defined precisely as in (3.21) and ε ∈ (0, 1/4).
Below we shall also need asymptotics of coupled random walks which take into
account only one of σb or σf boundary steps. To this end let us introduce the
following notation:

p̃b
n(t; v, x; u, y) = Pv,x

(
(Sb

n = (t, u, y)
)

=
∑

s,vb,xb

Qb(s, vb−v, xb−x)pn(t−s, u−vb, y−xb).

Similarly, define,

p̃f
n(t; v, x; u, y) = Pv,x

(
(Sf

n = (t, u, y)
)

=
∑

s,vn,xn

pn(s, vn−v, xn−x)Qf (t−s, u−un, y−xn).

The corresponding versions of path non-intersection events are,

Rb
n

∆
=
{
Xb

0 > V b
0

}
∩
{
Xb

k > V b
k : k = 1, . . . , n

}

Rf
n

∆
= {Xk > Vk : k = 1, . . . , n} ∩

{
Xf

n > V f
n

} (4.48)

Set r̃b
n(t; v, x; u, y) = Pv,x

(
Sb

n = (t, u, y);Rb
n

)
and, accordingly,

r̃f
n(t; v, x; u, y) = Pv,x

(
Sf

n = (t, u, y);Rf
n

)
.

Then, exactly as in (4.47) above,

r̃b
n(t; v, x; u, y) ∼ Ũ(x− v)U(y − u)

n
p̃b

n(t; v, x; u, y)

and

r̃f
n(t; v, x; u, y) ∼ U(x− v)Ũ(y − u)

n
p̃f

n(t; v, x; u, y),

(4.49)

uniformly in x > v, y > u such that max {|u− v|, |y − x|, |t− nµ|} . δ(n) and such
that max {x− v, y − u} . nǫ.

Our next task is to identify the limiting conditional (on non-intersection) marginal
distribution of the (Sb

0, S
b
1, S

b
2, . . . ) trajectory as n → ∞. The following notation is
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going to be convenient: Given two point w = (l, w),w′ = (l, w′) ∈ Z2 with the same
horizontal coordinate l set

{w,w′} ∆
= (l, w, w′) ∈ Z3. (4.50)

Fix m ∈ N. We claim:

lim
n→∞

Pv,x

(
Sb

0 = {vb, xb} , Sb
1 = {v1, x1} , . . . , Sb

m = {vm, xm}
∣∣∣ Sbf

n = (t, u, y);Rbf
n

)

=
1

Ũ(x− v)
Pv,x

(
Sb

0 = (vb, xb), S
b
1 = {v1, x1} , . . . , Sb

m = {vm, xm}
)
U(xm − vm)

∆
= P̃+

v,x

(
S0

b = {vb, xb} , Sb
1 = {v1, x1} , . . . , Sb

m = {vm, xm}
)
,

(4.51)

as usual, uniformly in x > v, y > u such that max {|u− v|, |y − x|, |t− nµ|} . δ(n)
and such that max {x− v, y − u} . nǫ. Indeed, formula (4.51) is an immediate

consequence of (4.47) and the second of (4.49). Notice that P̃+
v,x is an instance of

Doob’s h-transform.

In order to develop an analogus formula for the end piece of the trajectory and

Ŝ
b/f/bf
n as the reversed walk, taking steps σ̂b, (σ̂k)k > 1, σ̂f (recall our definition of σ̂

in (4.46)). In view of property (P3), satisifed by σk and Remark 3.2, S and Ŝ have
the same law. On the other hand, if we set

û = (0, u), v̂b = (t− ln, vn), . . . , v̂m = (t− ln−m, vn−m) (4.52)

and, accordingly, ŷ = (0, y), x̂b = (t− ln, xn), . . . , x̂m = (t− ln−m, xn−m), then a time
reversal path-transformation implies

lim
n→∞

Pv,x

(
Sb

n−m = {vn−m, xn−m} , Sb
n−m+1 = {vn−m+1, xn−m+1} , . . . , Sb

n = {vn, xn}
∣∣∣

Sbf
n = (t, u, y);Rbf

n

)

=
1

Ũ(y − u)
Pu,y

(
Ŝb

0 = {v̂b, x̂b} , Ŝb
1 = {v̂1, x̂1} , . . . , Ŝb

m = {v̂m, x̂m}
)
U(xn−m − vn−m)

∆
= P̃+

u,y

(
Ŝb

0 = {v̂b, x̂b} , Ŝb
1 = {v̂1, x̂1} , . . . , Ŝb

m = {v̂m, x̂m}
)
,

(4.53)

uniformly in x > v, y > u such that max {|u− v|, |y − x|, |t− nµ|} . δ(n) and

such that max {x− v, y − u} . nǫ. Note that under P̃+, S and Ŝ have the same
distribution. Nevertheless, for the sake of clarity, we shall continue to employ them
both.

5. Repulsion and Decoupling

It remains to prove Lemma 3.3. As we have already indicated just before the
statement of the Lemma, two underlying phenomena are a repulsion of the tra-
jectories of the upper and lower walks under the Rbf

n -constraint and a subsequent
asymptotic decoupling of the event {Γ1

• ∩ γup(Γ2
•) = ∅}.
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With the above in mind let us proceed with a formal construction. First of all,
repulsion will be quantified in terms of non-intersection of certain diamond shapes.

Diamond shapes. Given two points w and w′ define a diamond shape set

D(w,w′) = (w + Cδ) ∩ (w′ − Cδ) . (5.1)

Let us say that {Γ1,Γ2} ∈ F([w, z], [w′, z′]) if

Γ1 = w + Γ̃1, Γ2 = z + Γ̃2 and
{

Γ̃1, Γ̃2
}
∈ F([w′ − w, z′ − z]).

with similar definitions for Fb([w, z], [w
′, z′]) and Ff([w, z], [w

′, z′]). Obviously, if
{Γ1,Γ2} ∈ F([w, z], [w′, z′]) and D(w,w′) ∩D(z, z′) = ∅, then also Γ1 ∩ γup(Γ2) = ∅.

The event Rbf
n [m]. Let us fix K > 0 to be sufficiently large. Given an Rbf

n trajectory
(see the notational convention (4.50)),

S0 = (0, v, x), Sb
0 = {vb, xb} , Sb

1 = {v1, x1} , . . . , Sb
n = {vn, xn} , Sbf

n = (N, u, y),

let us say that Rbf
n [m] occurs if,

D(vk, vk+1) ∩D(xk, xk+1) = ∅ for all k = m, . . . , n−m− 1

and, in addition,

lm + (N − ln−m) 6 2Km,

(5.2)

where we use the notation vk = (lk, vk) and, accordingly, xk = (lk, xk).

Here is the key tool which enables the asymptotic analysis of

B̃v,x
p

(
Ã([v, x], [u, y])

∣∣Sbf
n = (N, u, y) ; Rbf

n

)
:

Proposition 5.1. There exists ψ : N→ R+ with limm→∞ ψ(m) = 0, such that

lim inf
N→∞

Pv,x

(
Rbf

n [m]
∣∣Sbf

n = (N, u, y),Rbf
n

)
> 1− ψ(m), (5.3)

uniformly in |v|, |x|, |u|, |y| . logN and |nµ−N | . √
N logN .

5.1. Repulsion. In this Subsection we prove Proposition 5.1. Recall the we are
employing the following notation for our coupled random walk: S = (T, V,X) and
Z = X − V . Fix η > 0 small. Apart from a possible violation of T b

m + (N −
T b

n−m) 6 2Km, if Rbf
n [m] fails to happen then either

An[m]
∆
=
{
∃ k ∈ [m, . . . , n−m− 1] : Zb

k < min {kη, (n− k)η}
}

happens, or

Bn[m]
∆
= {∃ k ∈ [m, . . . , n−m− 1] : ρk > γmin {kη, (n− k)η}}

happens, where γ depends on the choice of the cone opening parameter δ in the
definition (5.1) of the diamond shape D. In other words,

(
Rbf

n [m]
)c ⊆

{
T b

m + (N − T b
n−m) > 2Km

}
∪ An[m] ∪ Bn[m].
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Remark 5.2. Although (5.3) remains true for a wider range of parameters, all the
computations will be greatly simplified if we stick to our condition

|v|, |x|, |u|, |y| . logN and |N − nµ| .
√
N logN. (5.4)

Upper bound on Pv,x

(
T b

m + (N − T b
n−m) > 2Km

∣∣ Rbf
n , S

bf
n = (N ; u, y)

)
. Consider,

Pv,x

(
T b

m > Km,Rbf
n , S

bf
n = (N ; u, y)

)

6
∑

vm<xm

∑

s > Km+1

p̃b
m (s; v, x; vm, xm) r̃f

n−m (N − s; vm, xm; u, y) .

We may ignore |vm|, |xm|, s > N ǫ, for some ε < 1/4 and accordingly (see (4.49)),
use

r̃f
n−m (N − s; vm, xm; u, y)

1∼ U(xm − vm)

Ũ(x− v)
r̃n (N ; v, x; u, y) .

However, if Sm = (s, vm, xm), then (recall that we start at (0, v, x))

xm − vm 6 (x− v) + 2αs,

as it follows by the cone-confinement property (P1) of our random walk. Since, in

addition r/Ũ(r) . 1, we conclude that for N large enough:

Pv,x

(
T b

m > Km
∣∣ Rbf

n , S
bf
n = (N ; u, y)

)
. E

[
T b

m;T b
m > Km

]
, (5.5)

uniformly in m and in the range of parameters described in (5.4). The latter ex-
pression is exponentially decaying in m once K is fixed to be sufficiently large. The
case of N − T b

n−m > Km is completely similar. �

Upper bound on Pv,x

(
Bn[m]

∣∣ Rbf
n , S

bf
n = (N ; u, y)

)
. Write,

Bn[m] =

n−m−1⋃

k=m

{ρk > γmin {kη, (n− k)η}}

Since time steps ρk-s have exponentially decaying tails and since by (4.47) there
exists κ such that,

r̃n(N, v, x; u, y) &
1

Nκ

uniformly in our choice of paramters in (5.4), we need to consider only the case of
min {kη, (n− k)η} . logN .
Again in view of exponential tails of ρ-variables we may restrict attention to T b

k , |V b
k |, |Xb

k| ≪
N ǫ (ε < 1/4) whenever kη . logN

1∼ log n. Therefore, (4.49) implies,

Pv,x

(
ρk > γkη;Rbf

n , S
bf
n = (N, u, y)

)
6 Ev,x

[
ρk > γkη; r̃f

n−k(N − T b
k ;V b

k , X
b
k; u, y)

]

. Ev,x

[
ρk > γkη;

U(Xb
k − V b

k )

Ũ(x− v)

]
r̃n(N ; v, x; u, y)

. E
[
ρk > γkη;T b

k

]
r̃n(N ; v, x; u, y),
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where the last inequality holds for the same reason as (5.5). Consequently,

− log Pv,x

(
ρk > γkη

∣∣ Rbf
n , S

bf
n = (N, u, y)

)
& kη

and the sum ∑

k

Pv,x

(
ρk > γkη

∣∣ Rbf
n , S

bf
n = (N, u, y)

)

converges uniformly in (5.4). The treatment of Pv,x

(
ρk > γ(n− k)η

∣∣ Rbf
n , S

bf
n = (N, u, y)

)

for (n− k)η . logN is similar. �

Upper bound on Pv,x

(
An[m]

∣∣ Rbf
n , S

bf
n = (N ; u, y)

)
. As above decompose,

An[m] =
n−m−1⋃

k=m

{
Zb

k < min {kη, (n− k)η}
}

= ∪kA
k
n.

where

Ak
n =

{
Zb

k < min {kη, (n− k)η}
}
.

Tilting, if necessary, we may assume that ET bf
n = N , and hence, taking into account

the range of parameters in (5.4) and the asymptotic formula (4.47), we may assume
that

r̃n(N ; v, x; u, y) ∼ 1

n5/2
Ũ(x− v)Ũ(y − u). (5.6)

We shall use this as an a priori bound. Now, consider the case of k = min {k, n− k}:

Pv,x

(
Ak

n;Rbf
n ;Sbf

n = (N, u, y)
)

=
∑

0<xk−vk<kη

∑

s

r̃b
k(s; v, x; vk, xk)r̃

f
n−k(N − s; vk, xk; u, y).

In view of the polynomial order of (5.6) it is straightforward to rule out the possibility
of (see (4.1) for properties of δ(·)),

max {|u− vk|, |y − xk|, |(N − s)− (n− k)µ|} > δ(n/2).

Hence for the sake of the upper bound we may assume that (4.49) uniformly applies
to all the r̃n−k factors above (choose η < 1/4)

r̃f
n−k(N − s; vk, xk; u, y) .

U(xk − vk)Ũ(y − u)
n

p̃f
n−k (N − s; vk, xk; u, y)

.
U(kη)Ũ(y − u)

n
p̃f

n−k (N − s; vk, xk; u, y)

.
U(kη)Ũ(y − u)

n
p̃f

n (N ; v, x; u, y)

(5.7)
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Then, by (4.24)

Pv,x

(
Ak

n;Rbf
n ;Sbf

n = (N, u, y)
)

.
U(kη)Ũ(y − u)

n
p̃f

n (N ; v, x; u, y)
∑

1<r<kη

Px,v

(
Zb

k = r,Rb
k

)

.
U(kη)Ũ(y − u)

n
p̃f

n (N ; v, x; u, y)
∑

1<r<kη

r2

k1+1/2a∗ Ev,x

(
Zb

0;Z
b
0 > 0

)

.
U(kη)Ũ(y − u)

n
p̃f

n (N ; v, x; u, y) (x− v)k3η−1−1/2a∗

Hence, for k 6 n− k,
Pv,x

(
Ak

n;Rbf
n ;Sbf

n = (N, u, y)
)

. k4η−1−1/2a∗

The case n − k 6 k could be treated in a completely similar fashion. It remains
to choose η < 1/8 to ensure summability of,

∑

k > m

1

k1+1/2a∗−4η
∼ 1

m1/2a∗−4η
.

�

5.2. Decoupling.

An a priori lower bound. Define the conditional probabilities:

px,x′

v,v′ = B̃p

(
Γ1 ∩ γup(Γ2) = ∅

∣∣∣
(
Γ1,Γ2

)
∈ F([v, x], [v′, x′])

)

px,x′

v,v′
= B̃p

(
Γ1

b ∩ γup(Γ2
b) = ∅

∣∣∣
(
Γ1

b ,Γ
2
b

)
∈ Fb([v, x], [v

′, x′])
)

px,x′

v,u′ = B̃p

(
Γ1

f ∩ γup(Γ2
f ) = ∅

∣∣∣
(
Γ1

f ,Γ
2
f

)
∈ Ff([v, x], [v

′, x′])
)

By the finite energy property of ⊗Bp there exists α > 0, such that

px,x′

v,v′ & α<v′−v,e1>, px,x′

v,v′
& α<v′−v,e1>, px,x′

v,v′ & α<v′−v,e1> (5.8)

uniformly for all v, v′, x, x′. On the other hand px,x′

v,v′ = 1 as soon as {D(v, v′) ∩D(x, x′) = ∅}.
In this notation the conditional B̃v,x

p - probability of Ã([v, x], [u, y]) given a trajectory

Sb
0 = {vb, xb} , Sb

1 = {v1, x1} , . . . , Sb
n = {vn, xn} , Sbf

n = {u, y} from
{
Sbf

n = (N, u, y) ; Rbf
n

}

is precisely

px,xb

v,vb
× pxb,x1

vb,v1
×

n−1∏

1

pxk,xk+1
vk,vk+1

× pxn,y
vn,u & α

lb+N−ln+(l1−lb)+
P

k(lk+1−lk)1I{D(vk,vk+1)∩D(xk,xk+1) 6=∅}.

where we assume vk = {lk, vk}, xk = {lk, xk}. In view of Proposition 5.1 we infer
that there exists β > 0, such that

B̃v,x
p

(
Ã([v, x], [u, y])

∣∣Sbf
n = (N, u, y) ; Rbf

n

)
> β, (5.9)

uniformly in N , in |v|, |x|, |u|, |y| . logN and in |nµ−N | .
√
N logN .
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Identifying H(·) in (3.22). Clearly, for every m,

Ã([v, x], [u, y]) ∩Rbf
n [m] = Ãm([v, x], [u, y]) ∩Rbf

n [m], (5.10)

where the event Ãm = Ãm([v, x], [u, y]) is defined exactly as event Ã in (3.6), except
that the non-intersection requirement is in effect only near the boundary:

Γ1
b ∩ γup(Γ2

b) = ∅,Γ1
1 ∩ γup(Γ2

1) = ∅, . . . ,Γ1
m ∩ γup(Γ2

m) = ∅
and, accordingly

Γ1
n−m+1 ∩ γup(Γ2

n−m+1) = ∅, . . . ,Γ1
f ∩ γup(Γ2

f) = ∅.
Of course, Ã ⊆ Ãm. Furthermore,

B̃v,x‘
p

(
Ãm

∣∣Sbf
n = (N, u, y) ; Rbf

n

)
− B̃v,x

p

(
Ã
∣∣Sbf

n = (N, u, y) ; Rbf
n

)
6 2ψ(m),

(5.11)
as it readily follows from (5.3) and (5.10). The above bound is uniform inN, n, v, x, u, y
as in the statement of Proposition 5.1. In view of (5.9) the approximation is sharp
(as m→∞).

Now, conditional on a trajectory {vb, xb} , {v1, x1} , . . . , {vn, xn} , {vf , xf} the B̃v,x
p

probability of Ãm([v, x], [u, y]) is given by
(
px,xb

v,vb
× pxb,x1

vb,v1
×

m−1∏

1

pxk,xk+1
vk,vk+1

)
×
(

n−1∏

n−m

pxk,xk+1
vk,vk+1

× pxn,y
vn,u

)

∆
= pm ({v, x} , {vb, xb} . . . {vm, xm})× pm ({û, ŷ} , {v̂b, x̂b} , . . . , {v̂m, x̂m}) ,

where we use the same notation as in (4.52) (with t = N).
By the a priori bound (5.9), (5.11) and in view of (4.51) and (4.53), we infer that
uniformly in the range of parameters (5.4),

B̃v,x
p

(
Ãm

∣∣Sbf
n = (N, u, y) ; Rbf

n

)
(1 + o(1)) ∼ Ẽ+

v,x

(
pm(Sb

0, . . . , S
b
m)
)

Ẽ+
u,y

(
pm(Ŝb

0, . . . , Ŝ
b
m)
)

asymptotically as n → ∞ and then as m → ∞. Consequently, we recover (3.22)
with

H(x− v) ∆
= lim

m→∞
Ẽ+

v,x

(
pm(Sb

0, . . . , S
b
m)
)

= lim
m→∞

Ẽ+
v,x

(
pm(Ŝb

0, . . . , Ŝ
b
m)
)
.

�

References

[AB] M.Aizenman, D.J. Barsky (1987), Sharpness of the phase transition in percolation models,
Comm. Math. Phys. 108, 3, 489–526.

[AD] L. Alili and R.A. Doney (1999), Wiener-Hopf factorization revisited and some applications,
Stochastics Stochastics Rep. 66, no. 1-2, 87–102.

[BJD] A. Byrn-Jones and R.A Doney (2006), A Functional Limit Theorem for Random Walk
Conditioned to Stay Non-Negative, J. London Math. Soc. 74, no. 2, 244–258.

[BPS1] G.A. Braga, A. Procacci , R. Sanchis (2002) Analyticity of the d-Dimensional Bond Per-
colation Probability Around p = 1, Journal of Statistical Physics, 107, 5/6, 1267–1282.

[BPS2] G.A. Braga, A. Procacci , R. Sanchis (2004), Ornstein-Zernike behavior for the Bernoulli
bond percolation on Zd in the supercritical regime, Commun. Pure Appl. Anal. 3,4, 581–606



40 MASSIMO CAMPANINO, DMITRY IOFFE, AND OREN LOUIDOR

[BF] J. Bricmont, J. Frhlich (1985), Statistical mechanical methods in particle structure analysis
of lattice field theories. I. General theory, Nuclear Phys. B 251, 4, 517–552 .

[CI] M. Campanino, D. Ioffe (2002), Ornstein-Zernike Theory for the Bernoulli bond percolation
on Zd, Ann.Probab. 30, 652-682.

[CIV1] M. Campanino, D. Ioffe, Y. Velenik (2003), Ornstein-Zernike theory for finite range Ising
models above Tc, Probab. Theory Related Fields 125, 3, 305–349.

[CIV2] M. Campanino, D. Ioffe, Y. Velenik (2004), Random path representation and sharp corre-
lation asymptotics at high temperatures, Stochastic analysis of large scale interacting systems,
Adv. Stud. Pure Math., 39, 29–52, Math. Soc. Japan, Tokyo.

[CIV3] M. Campanino, D. Ioffe, Y. Velenik (2008), Fluctuation theory of connectivities for sub-
critical random cluster models, Ann. Probab. 36, 4, 1287–1321.

[CCGKS] J.T. Chayes, L. Chayes, G.R. Grimmett, H. Kesten, R.H. Schonmann (1989), The cor-
relation length for the high-density phase of Bernoulli percolation, Ann. Probab. 17, 4, 1277–
1302.

[FL1] W. Feller (1957), An Introduction to Probability Theory and Its Applications - Volume I,
John Wiley and Sons, Inc.

[FL2] W. Feller (1957), An Introduction to Probability Theory and Its Applications - Volume II,
John Wiley and Sons, Inc.

[GI] L. Greenberg and D. Ioffe (2005), On an invariance principle for phase separation lines,
Annales de l’Institut Henri Poincare (B) Probability and Statistics, 41, 5, 871–885.

[Me] M.V. Menshikov (1986), Coincidence of critical points in percolation problems, Dokl. Akad.
Nauk SSSR 288,6, 1308–1311

Dipartimento di Matematica, Università di Bologna, piazza di Porta S. Donato
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