251 research outputs found

    A Hidden Markov Model for identifying essential and growth-defect regions in bacterial genomes from transposon insertion sequencing data

    Get PDF
    BACKGROUND: Knowledge of which genes are essential to the survival of an organism is critical to understanding the function of genes, and for the identification of potential drug targets for antimicrobial treatment. Previous statistical methods for assessing essentiality based on sequencing of tranposon libraries have usually limited their assessment to strict 'essential’ or 'non-essential’ categories. However, this binary view of essentiality does not accurately represent the more nuanced ways the growth of an organism might be affected by the disruption of its genes. In addition, these methods often limit their analysis to open-reading frames. We propose a novel method for analyzing sequence data from transposon mutant libraries using a Hidden Markov Model (HMM), along with formulas to adapt the parameters of the model to different datasets for robustness. This approach allows for the clustering of insertion sites into distinct regions of essentiality across the entire genome in a statistically rigorous manner, while also allowing for the detection of growth-defect and growth-advantage regions. RESULTS: We evaluate the performance of a 4-state HMM on a sequence dataset of M. tuberculosis transposon mutants. We also test the HMM on several synthetic datasets representing different levels of transposon insertion density and sequence coverage. We show that the HMM produces results that are highly correlated with previous assignments of essentiality for this organism. We also show that it detects growth-defect and growth-advantage genes previously shown to impair or enhance growth when disrupted. CONCLUSIONS: A 4-state HMM provides an improved way of analyzing Tn-seq data and assessing different levels of essentiality that enables not only the characterization of essential and non-essential genes, but also genes whose disruption leads to impairment (or enhancement) of growth

    Automated detection of disulfide bridges in electron density maps using linear discriminant analysis

    Get PDF

    Cell cycle-associated expression patterns predict gene function in mycobacteria [preprint]

    Get PDF
    While the major events in prokaryotic cell cycle progression are likely to be coordinated with transcriptional and metabolic changes, these processes remain poorly characterized. Unlike many rapidly-growing bacteria, DNA replication and cell division are temporally-resolved in mycobacteria, making these slow-growing organisms a potentially useful system to investigate the prokaryotic cell cycle. To determine if cell-cycle dependent gene regulation occurs in mycobacteria, we characterized the temporal changes in the transcriptome of synchronously replicating populations of Mycobacterium tuberculosis (Mtb). By enriching for genes that display a sinusoidal expression pattern, we discover 485 genes that oscillate with a period consistent with the cell cycle. During cytokinesis, the timing of gene induction could be used to predict the timing of gene function, as mRNA abundance was found to correlate with the order in which proteins were recruited to the developing septum. Similarly, the expression pattern of primary metabolic genes could be used to predict the relative importance of these pathways for different cell cycle processes. Pyrimidine synthetic genes peaked during DNA replication and their depletion caused a filamentation phenotype that phenocopied defects in this process. In contrast, the IMP dehydrogenase guaB2 dedicated to guanosine synthesis displayed the opposite expression pattern and its depletion perturbed septation. Together, these data imply obligate coordination between primary metabolism and cell division, and identify periodically regulated genes that can be related to specific cell biological functions

    Automatic modeling of protein backbones in electron-density mapsviaprediction of Cαcoordinates

    Get PDF

    Distinct Bacterial Pathways Influence the Efficacy of Antibiotics against Mycobacterium tuberculosis

    Get PDF
    Effective tuberculosis treatment requires at least 6 months of combination therapy. Alterations in the physiological state of the bacterium during infection are thought to reduce drug efficacy and prolong the necessary treatment period, but the nature of these adaptations remain incompletely defined. To identify specific bacterial functions that limit drug effects during infection, we employed a comprehensive genetic screening approach to identify mutants with altered susceptibility to the first-line antibiotics in the mouse model. We identified many mutations that increase the rate of bacterial clearance, suggesting new strategies for accelerating therapy. In addition, the drug-specific effects of these mutations suggested that different antibiotics are limited by distinct factors. Rifampin efficacy is inferred to be limited by cellular permeability, whereas isoniazid is preferentially affected by replication rate. Many mutations that altered bacterial clearance in the mouse model did not have an obvious effect on drug susceptibility using in vitro assays, indicating that these chemical-genetic interactions tend to be specific to the in vivo environment. This observation suggested that a wide variety of natural genetic variants could influence drug efficacy in vivo without altering behavior in standard drug-susceptibility tests. Indeed, mutations in a number of the genes identified in our study are enriched in drug-resistant clinical isolates, identifying genetic variants that may influence treatment outcome. Together, these observations suggest new avenues for improving therapy, as well as the mechanisms of genetic adaptations that limit it. IMPORTANCE Understanding how Mycobacterium tuberculosis survives during antibiotic treatment is necessary to rationally devise more effective tuberculosis (TB) chemotherapy regimens. Using genome-wide mutant fitness profiling and the mouse model of TB, we identified genes that alter antibiotic efficacy specifically in the infection environment and associated several of these genes with natural genetic variants found in drug-resistant clinical isolates. These data suggest strategies for synergistic therapies that accelerate bacterial clearance, and they identify mechanisms of adaptation to drug exposure that could influence treatment outcome

    Statistical analysis of genetic interactions in Tn-Seq data

    Get PDF
    Tn-Seq is an experimental method for probing the functions of genes through construction of complex random transposon insertion libraries and quantification of each mutant\u27s abundance using next-generation sequencing. An important emerging application of Tn-Seq is for identifying genetic interactions, which involves comparing Tn mutant libraries generated in different genetic backgrounds (e.g. wild-type strain versus knockout strain). Several analytical methods have been proposed for analyzing Tn-Seq data to identify genetic interactions, including estimating relative fitness ratios and fitting a generalized linear model. However, these have limitations which necessitate an improved approach. We present a hierarchical Bayesian method for identifying genetic interactions through quantifying the statistical significance of changes in enrichment. The analysis involves a four-way comparison of insertion counts across datasets to identify transposon mutants that differentially affect bacterial fitness depending on genetic background. Our approach was applied to Tn-Seq libraries made in isogenic strains of Mycobacterium tuberculosis lacking three different genes of unknown function previously shown to be necessary for optimal fitness during infection. By analyzing the libraries subjected to selection in mice, we were able to distinguish several distinct classes of genetic interactions for each target gene that shed light on their functions and roles during infection
    • …
    corecore