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TEXTAL is an automated system for building protein

structures from electron-density maps. It uses pattern

recognition to select regions in a database of previously

determined structures that are similar to regions in a map of

unknown structure. Rotation-invariant numerical values,

called features, of the electron density are extracted from

spherical regions in an unknown map and compared with

features extracted around regions in maps generated from a

database of known structures. Those regions in the database

that match best provide the local coordinates of atoms and

these are accumulated to form a model of the unknown

structure. Similarity between the regions in the database and

an uninterpreted region is determined ®rstly by evaluating the

numerical difference in feature values and secondly by

calculating the electron-density correlation coef®cient for

those regions with similar feature values. TEXTAL has been

successful at building protein structures for a wide range of

test electron-density maps and can automatically model entire

protein structures in a few hours on a workstation. Models

built by TEXTAL from test electron-density maps of known

protein structures were accurate to within 0.6±0.7 AÊ root-

mean-square deviation, assuming prior knowledge of C�

positions. The system represents a new approach to protein

structure determination and has the potential to greatly

reduce the time required to interpret electron-density maps in

order to build accurate protein models.
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1. Introduction

X-ray crystallography is the most widely used method for

determining the atomic structures of proteins and other

macromolecules. While there are many steps involved in

structure determination, from collecting X-ray diffraction data

to calculating phases for electron-density maps, the ®nal

process of interpreting an electron-density map is one of the

most time-consuming and error-prone tasks. Model building is

typically performed by a human crystallographer at a

computer graphics terminal, with the help of molecular-

visualization software such as O (Jones, 1978), and can take

weeks to months of the researcher's time examining complex

three-dimensional patterns of electron density. This process is

complicated by a number of sources of noise that can perturb

the density and obscure the underlying structure, such as low-

resolution data, errors in phase estimates or inherently

disordered regions (Richardson & Richardson, 1985; BraÈndeÂn

& Jones, 1990). As a consequence, model-building is often

viewed as a `labor of love' for the crystallographer and is one

of the primary bottlenecks impeding the progress of structural

biology. Increased automation in structure determination is

critically needed for large-scale structural genomics projects
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(Terwilliger & Berendzen, 1999; Bonanno, 1999) which aim to

solve a wide range of protein structures in order to increase

the understanding of complex biological systems and to

explore the space of protein folds. Structure-based drug-

design methods would similarly bene®t from rapid access to

new structures aided by automated methods for protein

structure determination. To date, several automated methods

have been developed (Jones et al., 1991; Fortier et al., 1997;

Kleywegt & Jones, 1997; Leherte et al., 1994; Holm & Sander,

1991; Levitt, 1992). However, these methods are typically

limited to high-quality maps, requiring high-resolution data

and/or near-perfect phase estimates for suitable success and

accuracy in model building.

In this paper, we introduce a new approach to interpreting

electron-density maps based on pattern-recognition methods,

implemented in a program called TEXTAL. TEXTAL

exploits the large number of protein structures previously

solved by X-ray crystallography as a source of insight on how

to solve new structures. The core principle underlying the

pattern-recognition aspect of TEXTAL is that regions from

two maps with similar patterns of electron density should have

similar local molecular structures. We have developed a

program which extracts characteristic numerical values that

describe the patterns in a local region of an unsolved electron-

density map. A related program then ef®ciently searches for

similar patterns in a database of maps of previously solved

structures. Regions that have similar density patterns are

located in the database and atomic coordinates corresponding

to these known regions are retrieved from the database,

reoriented and appended to the growing model of the

unknown.

The advantage of this pattern-recognition approach is that

it can exploit the availability of natural regularities in protein

structure (e.g. common backbone and side-chain conforma-

tions) as they occur in the database. TEXTAL also is able to

exploit the natural bias in the database towards commonly

occurring conformations (and density patterns), which

facilitates the interpretation of regions of density in lower

resolution maps (�3 AÊ ) where individual atoms might not be

distinguishable, but only the overall shape and orientation of

side chains can be seen. Ultimately, TEXTAL has the

potential to reduce the time required to build complete

models of large proteins from weeks to hours and may also

enable interpretation of lower quality maps. In the remaining

sections, we describe related work in computational crystal-

lography, followed by the methods used by TEXTAL in more

detail and then the results of several experiments in which

TEXTAL was used to model proteins from both simulated

and real electron-density maps.

2. Related work

Over the past 20 years, numerous computational procedures

have been developed to assist the crystallographer throughout

the structure-determination process. Methods are available

for improving phase estimates, such as SHARP for heavy-

atom parameter re®nement (de la Fortelle et al., 1997;

Bricogne, 1997) or Shake-n-Bake (Miller et al., 1994), which

has been shown to identify accurate phases by direct methods

for smaller proteins. Various programs are also available for

masking and solvent ¯attening, Patterson correlation searches

etc. However, the ®nal process of interpreting a map and

building a model for a protein structure remains a signi®cant

challenge for automation.

There are typically two steps to automated model building:

skeletonization/main-chain tracing followed by side-chain

construction. Skeletonization provides a framework for

solving a structure by forming a tentative backbone trace for

the initial map. Common skeletonization approaches include

Greer's method, which uses a density threshold to de®ne a

continuous chain (Greer, 1985), and critical-point analysis

(Leherte et al., 1994), which analyzes the gradient in the

density to identify likely locations of atoms. Other methods

include core-tracing (Swanson, 1994) and X-AUTOFIT

(Old®eld, 1997). Automated methods for building side chains

include template matching of fragments using a database

search followed by energy minimization (Jones & Thirup,

1986), an approach recently extended in the MaxSprout

(Holm & Sander, 1991) and Segment Match Modeling (Levitt,

1992) algorithms. A similar approach also uses fuzzy logic to

guess the sequence of residues in a region and (where

possible) real-space re®nement to improve the ®t of side

chains to density (Old®eld, 1997). These methods have been

successful at building protein molecules to a moderate degree

of accuracy, especially for high-resolution structures

(1.0±1.5 AÊ r.m.s.d.).

Other approaches assist the crystallographer by positioning

entire molecular structures within density. Such methods

include template convolution (Kleywegt & Jones, 1997), which

searches an unknown map in Fourier space for prototypical

�-helices or �-strands, but requires anticipation of the correct

prototype fragment and orientation of the structural element

in the map, molecular scene analysis (Fortier et al., 1997),

which uses computer visual-processing routines to char-

acterize geometric structures within a map, and knowledge-

based methods such as CRYSALIS (Terry, 1983), which

capture heuristics and human expertise about protein struc-

ture to interpret electron-density maps. Of particular note is

wARP (Perrakis et al., 1997), which combines phase

improvement with model building by placing pseudo-atoms

into the map and adjusting their ®t to the density, recalculating
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Table 1
Feature types and descriptions.

Feature type Description Number

Basic characteristics of
spheres of density

Average density, distance from
center of sphere to center of mass

2

Moments of inertia Magnitude of primary, secondary
and tertiary moments, ratios
among moments

6

Statistical properties
of density

Standard deviation, skewness,
kurtosis

3

Spokes of density
within spheres

Three spoke angles, three radial
sums, sum of spoke angles, area
of the spoke triangle

8
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phases, reconstructing the map and iterating. wARP has been

shown to build accurate models for a wide variety of proteins,

although it is limited to interpreting only high-resolution maps

(�2.4 AÊ resolution). In spite of the progress that has been

made in solving structures automatically from high-resolution

maps, it is imperative to develop new methods to automate the

interpretation of larger proteins in lower quality maps owing

to either low resolution and/or imperfect phases.

3. Methods

3.1. Overview

The method TEXTAL uses to create a model of a protein

from an unsolved density map is brie¯y described as follows.

First, a suitable database containing density maps for a large

number (�200) of previously solved proteins is compiled.

Likely positions for C� atoms in the unknown map are iden-

ti®ed (or, as in our initial tests, assumed to be known).

Numeric values which describe the patterns of density around

each �-carbon of the unknown are then calculated. In the

pattern-matching ®eld of computer science, the technical term

for such numeric representations of patterns is features

(Fayyad et al., 1996; Asker & Maclin, 1997; Wisniewski &

Medin, 1994; Duda & Hart, 1973) and we will use this term for

such values throughout the rest of this manuscript. Appro-

priate features describing a region of electron density are

quantities such as the average electron density, the moments

of inertia etc., and are detailed below. The features of the

unknown region are then directly compared with the features

for all regions in the database. Regions from the database

which have similar features to the unknown potentially have

similar structures, so a more detailed comparison is made

based on the correlation coef®cient of the electron density in

the two regions. The region from the database which has the

highest correlation to the unknown region is treated as the

best-matching region in the database. Atomic coordinates

corresponding to the side chain for that best-matching region

are then retrieved from the database, suitably oriented and

added to the model. The process is then repeated for the next

C�, incrementally building a model for the unknown structure.

3.2. Descriptions of the electron-density features

The ®rst step necessary for a pattern-recognition approach

such as that employed by TEXTAL is the development of a

set of features which describe the patterns in the data. Of the

many possible features, not all are useful for the task at hand.

For example, in a pattern-recognition algorithm designed to

determine the make and model of a car from a photograph,

the color of the car may not be a useful feature (many models

may be painted the same shade of white), while the number of

doors, the spacing between the wheels and the shape of the

mirrors would be likely to be useful. For interpreting electron-

density maps, we ®rst determine a reasonable set of features

which are likely to be useful for describing the patterns of

density. To do so, an electron-density map is treated as a set of

overlapping spheres of density containing information about

regions of the protein structure. We have experimented with

spheres of density that range from 3 to 6 AÊ in radius (Ioerger

et al., 1999). Using multiple radii permits TEXTAL to focus on

different aspects of the local structure (e.g. side-chain rota-

mers, common backbone con®gurations, secondary structural

characteristics). Because features are extracted and tabulated

only once for regions in each protein in the database and

unknown regions are compared to the database initially by

feature value alone, TEXTAL is able to ef®ciently search a

large database for regions with similar patterns of density.

Such regions with similar density patterns are presumed to

contain similar local molecular structures, which are then

placed into the growing model.

Because protein structural elements can be positioned in

any orientation, useful features of the electron density must be

rotation-invariant (i.e. constant even when a pattern is

rotated). 15 rotation-invariant numeric features have been

developed which characterize patterns in the electron-density

maps to be used in recognizing similar regions. There are four

major categories of features (Table 1), with several different

variants within each category, to give a total of 19 features for

each radius. Since each feature is calculated at each of four

different radii, there are a total of 76 feature/radius combi-

nations. A description of each of the 19 basic features is given

below.

Two features are used to describe the basic characteristics of

the spheres. The ®rst is the average density of the region (�).

If two regions of density are similar in structure, the average

densities of the regions should also be similar,

� � �P �i�=n;

where �i is the density at lattice point i and n is the number of

points in the region. Also, while the location of the center of

mass of the region is not rotation-invariant, we use the

distance from the center of mass of a sphere to the center of

the sphere, where the center of mass hcx, cy, czi is given by

hcx; cy; czi � h�
P
�ixi�=�; �

P
�iyi�=�; �

P
�izi�=�i

and

dcenter � �c2
x � c2

y � c2
z�1=2;

assuming the geometric center of the sphere is translated to

h0, 0, 0i. These features are independent of orientation and

were found to be important in the selection of good matches.

The second category consists of six different features all

based on the moments of inertia in a region. The moments of

inertia for a given region of density are measurements of the

distribution of density in three dimensions. Each pattern of

density has exactly one set of moments that describe the

distribution of density around its center of mass. The primary

moment lies along the path through the sphere around which

the density is most widely distributed; the secondary and

tertiary moments are orthogonal to each other and the

primary moment and describe paths which have progressively

narrower density distributions. Since the moments themselves

are direction vectors with three components, we take the

magnitude of the three moments of inertia as separate



features, in sorted order. Moments of inertia are calculated by

constructing an inertia matrix,

I �
P
�iy

2
i � z2

i ÿP �ixiyi ÿP �ixizi

ÿP �ixiyi

P
�ix

2
i � z2

i ÿP �iyizi

ÿP �ixizi ÿP �iyizi

P
�ix

2
i � y2

i

������
������;

where �i is the density at point i and xi, yi and zi are coordi-

nates of point i relative to the center of mass. The inertia

matrix is diagonalized and the diagonal elements (eigen-

values) are sorted by magnitude to obtain the corresponding

moments of inertia. The ratios of these moments provide

additional information about the shape of the density (e.g.

spherical, ellipsoidal) and are included as three more features.

Statistical properties of the density of lattice points within

each sphere form a third category of features. The standard

deviation (�) is a sensitive description that varies widely

throughout different distributions of data. Skewness

(1/n)[
P

(�i ÿ �)3/�3] is a measure of the asymmetry in the

distribution. Only a perfect Gaussian distribution has a

skewness of 0.0; all others are either skewed positively or

negatively. The kurtosis (1/n)[
P

(�i ÿ �)4/�4] describes the

peakedness of the statistical distribution. Although dif®cult to

visualize in three dimensions, these features are all rotation-

invariant and it is expected that similar regions of density will

have similar statistical characteristics.

A fourth category of features which is designed to take

advantage of speci®c knowledge about protein structure

describes the geometry of the density within each sphere.

Given a sphere of density centered at an �-carbon of a (non-

glycine) amino acid, there should be three major `tubes' of

density (like spokes on a wheel) projecting out from this point:

one for the side chain and two for either direction of the main

chain. The three spokes are de®ned as the vectors from the

center to the surface of the sphere which have the maximum

radial sum, with the caveat that the spokes be at least 75�

apart. The radial sum is calculated as the sum of the densities

evaluated at ten evenly spaced points along the length of

spoke. Since evaluating all possible spoke directions is

impractical, the surface of the spherical region is sampled at

320 evenly spaced regions (which result from successive

subdivisions of an icosahedron), so 320 trial spokes are used;

the three with the highest radial sum which are also at least 75�

apart are de®ned as the spokes for that region. A higher

number of samples on the surface of the sphere was investi-

gated, but did not result in any improvement.

To derive rotation-independent information about the

arrangement of tubes of density within each sphere, the angles

between the spokes are measured and the maximum, median

and minimum spoke angles are utilized as features, as there

should be similar angles between spokes in similar regions of

density. Also, the sum of the angles is an approximate measure

of the planarity of the three spokes (since the sum of the

angles for co-planar spokes would equal 360�); hence, this

allows us to use the sum of the spoke angles as another

feature. Three additional spoke features developed for

TEXTAL are the radial sum of each spoke; the ®nal spoke

feature is the area of the triangle with vertices formed by the

endpoints of the three spokes.

3.3. Outline of the TEXTAL method

The core model-building procedure in TEXTAL, illustrated

in Fig. 1, involves the following steps: (1) creating a database

of known structures and extracting the features from regions

in it, (2) for each region in the unknown, searching for regions

in the database with matching features to create a list of

candidate matches, (3) evaluating the candidate matches by

density correlation and (4) assembling the model from the

matched regions. The input required for TEXTAL is an

electron-density map and a database of feature-extracted

maps of known structures, which is created off-line from the

TEXTAL model-building process (step 1 above). For a given

test map, TEXTAL ®rst extracts the features described above

for the region under investigation in the uninterpreted map

and compares these features with the pre-tabulated features

for each of the regions in the database (step 2, referred to as

the lookup). In our current implementation, the centers of the

regions are selected as the locations of the C� atoms. The

similarity between two regions is evaluated by measuring the

difference in the feature values for the two regions: ideally, the

lower the difference, the more similar the regions. The total

feature difference �F is de®ned as the weighted Euclidean

distance between the feature values in the two regions,

�F�Ri;Rj� � f
P

wk�Fk�i� ÿ Fk�j��2g1=2; �1�

where Fk are the individual features and wk is the weight

associated with each feature. The weights are calculated

separately and are discussed below.

The program then retains the top N matching regions based

on feature evaluation, where N is a user-selectable parameter.

These N regions are further analyzed for similarity by calcu-

lating the density correlation coef®cient (step 3). Since a
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Schematic of the TEXTAL process.
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density map is a discrete representation of a continuous three-

dimensional density function sampled at lattice points i, the

correlation coef®cient (cc), may be calculated by

cc �
P �xi ÿ x��yi ÿ y�

�P �xi ÿ x�2�1=2�P �yi ÿ y�2�1=2
; �2�

where xi and yi are the densities in each region at each lattice

point i and x and y are the average densities in the two regions.

Since a region from an unknown map may be rotated relative

to the known region, we de®ne the true density correlation as

the correlation coef®cient obtained when the two regions are

optimally aligned. The optimal rotation can be estimated using

one of several methods, including a full three-dimensional

search, a more directed peak-matching search or by aligning

the moments of inertia, each representing a different trade-off

of accuracy and ef®ciency. After investigating these methods,

we found the simple approach of aligning the moments of

inertia for the two regions to be both fast (up to 70 cc calcu-

lations per second) and accurate for regions with similar

patterns of density.

This correlation coef®cient as a measurement of similarity is

appropriate for comparing spherical regions of a general

density map. However, for regions centered on C� atoms of

amino-acid residues as employed in this study, a large portion

of the density in the spherical region is not from the amino

acid of interest, but instead from neighboring amino acids

and long-range contacts. Therefore, a modi®cation of the

correlation-coef®cient calculation is introduced which

increases the discriminating capability of TEXTAL by

limiting the density comparison to a cylinder which covers

only the side chain and backbone of the current residue. A

vector v which originates at the �-carbon of each region and

points in the direction of the midpoint of the side-chain atoms

of the current residue, referred to as the side-chain axis vector,

was stored as part of the feature database.

The lookup process involves superimposing regions via the

moments of inertia. However, the correlation calculation is

limited to the density in a round-ended cylinder 2.5 AÊ in

diameter and 5.0 AÊ in length along the axis de®ned by this

side-chain axis vector v, as demonstrated in Fig. 2. Empirical

tests indicated that such a region is suf®cient to cover the side

chain and backbone of a single residue in most cases, which is

the true region of interest. Using the side-chain axis correla-

tion calculation signi®cantly improves TEXTAL's selection of

candidate regions, presumably because the in¯uence of

neighboring disconnected atoms is eliminated. The improve-

ment was found in both higher correlations (an increase of

�0.2) and in the accuracy of the matching regions by sequence

identity/similarity (an improvement of between 10 and 20%).

All correlation coef®cients reported here are side-chain axis

correlation coef®cients.

The ®nal step (step 4) involves selecting the region from the

top N candidate matches which has the highest correlation

coef®cient. This region is considered to be the most likely

region in the database to match the unknown region. The

atoms from the amino acid and protein corresponding to this

region are extracted from the database and rotated and

translated into position using the same transformation matrix

which was used to orient the density regions for comparison.

3.4. Database of electron-density maps

TEXTAL requires a database of previously interpreted

electron-density maps as a source of example regions that

associate density patterns with local molecular structures.

Ideally, maps derived from measured structure factors and

experimental phases (MAD or MIR) would be used, since

they best represent the types of patterns likely to be

encountered in solving a new map. These should become

widely available in the near future as deposition of structure

factors into protein databases such as the PDB continues. In

our current experiments, we have used electron-density maps

generated from atomic coordinates in PDB ®les. A set of

simulated structure factors was created by Fourier transfor-

mation and then back-transformed into a density map using

X-PLOR (BruÈ nger, 1996).

These maps were produced using re¯ections from 10 to

2.8 AÊ resolution to make them representative of patterns in

medium/low-resolution maps. Importantly, the transformation

process used the temperature factors associated with each

atom to produce weakened or diffuse density in less-ordered

Figure 2
The side-chain axis correlation. The green cylinder is 5.0 AÊ in length, with
spherical 2.5 AÊ endcaps. The axis lies in the direction from the C� to the
center of mass of the side-chain atoms. The wire-frame sphere, also
centered at the C�, has a radius of 5.0 AÊ . Restricting the correlation
calculation to this cylinder helps make cc more accurately re¯ect the
similarity between the two regions by focusing on the side-chain and
backbone of the residue in question, without being affected by irrelevant
differences in the density arising from neighboring residues or
discontiguous parts of the structure that also enter the 5 AÊ sphere.



parts of the structure such as arginine side chains or glycine

main chains, which is often found in real MIR/MAD maps.

Each map was created in a P1 space group with orthogonal

axes, with approximately 1.0 AÊ grid spacing and a 5.0 AÊ border

around the edges of the protein. Back-transformed maps are

currently used to populate the database in TEXTAL. For

these experiments, our database consisted of the ®rst 200

proteins in the PDB Select, a list of unique well re®ned

structures in the PDB with less than 25% similarity (Holm &

Sander, 1993). At each of the C� coordinates for all residues in

these 200 structures (54 164 regions in total), features were

extracted in spheres of 3, 4, 5 and 6 AÊ in radius. Below, we

report results of using this database to model other back-

transformed maps, as well as a real map derived from newly

collected X-ray diffraction data.

3.5. Weighting of features

TEXTAL uses a weighted Euclidean feature-difference

calculation (1) as an initial measure of similarity. It is impor-

tant to weight the features in a Euclidean distance metric

based on which features are most relevant because irrelevant

features can confuse the pattern-matching algorithm (Langley,

1994; Aha, 1998; John et al., 1994). Those features that are

better at describing characteristics of density than other

features should have a greater weight associated with them. To

®nd appropriate weights that weight the relevant features in

TEXTAL more heavily, the Slider algorithm was developed.

We can measure the relevance of a feature by considering how

similar it is between known pairs of matching regions, relative

to random pairs of mis-matching regions. To quantify this, the

ranking quality of a feature F is de®ned as the average relative

rank of matching regions in comparison to non-matching

regions. A set of m pairs of regions {(Ai, Bi)} that are known to

match, in the sense of having high density correlation (e.g.

cc > 0.7), is used to estimate this empirically. Then, for each

region Ai, a set of n other regions {Ci;j} that do not match

(cc < 0.7) is selected. Given these sets of data, the �F score (1)

is determined for Ai with Bi and with each of the corre-

sponding mis-matches Ci;j, then sorted based on �F, and the

absolute rank ri of the matching region Bi against all the others

is obtained. The relative rank r̂i is calculated by dividing by the

total number of mis-matches, which normalizes it to a range of

[0 . . . 1], and orienting it so that 1 corresponds to ranking the

true match at the top (with smallest �F): r̂i = (n ÿ ri)/n.

Finally, the ranking quality of the feature is determined by the

average relative ranking score over all the matching pairs,

RQ�F� � �1=m�P
i

r̂i:

The de®nition of ranking quality extends to arbitrary distance

metrics in addition to individual features; hence, we can

measure the performance of given set of weights w by

calculating its ranking quality in terms of how the linear

combination of feature differences, weighted by w, ranks true

matches relative to mis-matches, RQ(w).

The approach Slider uses to optimize weights is based on a

greedy algorithm (Russell & Norvig, 1995) that randomly

selects one feature at a time and adjusts its weight against all

the others simultaneously, with the aim of increasing ranking

quality as much as possible. To begin, we start with a uniform

weight vector w0 = h1n, 1
n . . . i, where n is the number of features.

Then, with each iteration i, we randomly select a feature Fj,

1 � j � n. Given the current weight vector at that time, wi, we

construct a modi®ed weight vector w0i in which the weight for

the selected feature Fj is set to 0 and the other weights are

increased in proportion to maintain the property of summing

to 1,

w0i;j � 0 and w0i;k � wi;k=�1ÿ wi;j� for k 6� j:

Given the selected feature Fj and the modi®ed metric w0i, Slider

uses the sets of matches and mis-matches to ®nd the optimal

combination of these two metrics as a binary mixture {here,

�Fx(Ra, Rb) means [Fx(Ra) ÿ Fx(Rb)]2; we have dropped the

square root, but the relative order of the feature differences is

not changed},

�mix�Ra;Rb� � u ��Fj�Ra;Rb� � �1ÿ u� ��w0
i
�Ra;Rb�

� u � �Fj�Ra� ÿ Fj�Rb��2
� �1ÿ u� �P

k

w0i;k �Fk�Ra� ÿ Fk�Rb��2:

The goal is to ®nd the value for 0 � u � 1 that maximizes the

ranking quality RQ(mix). Once the optimal value for u is

determined, a new and improved weight vector wi�1 can be

calculated for the next iteration as follows:

wi�1;j � u and wi�1;k � w0i;k=�1� u� for k 6� j:

The optimal value for u was calculated by solving simple linear

equations for comparisons between various matching and

non-matching regions. Suppose we have two distance metrics

M1 and M2, corresponding to Fj and w0i above, and we want to

®nd the u that maximizes the ranking quality for the mixture

metric Mmix = u�M1 + (1 ÿ u)�M2. If we consider triplets

consisting of each example region Ai, its known matching

region Bi and one of the random mis-matching regions Ci;j, we

can easily determine the effect on the ranking of Bi above or

below Ci;j for all 0 � u � 1. Since the mixture is a linear

combination, the distances of Bi and Ci;j to Ai `slide' linearly

between �M1(Ai, Bi) and �M2(Ai, Bi) and between

�M1(Ai, Ci;j) and �M2(Ai, Ci;j), respectively, as u slides

between 0 and 1. Hence, there is at most one `crossover point'

at which Bi can switch places with Ci;j in the ranking, thus

increasing or decreasing the overall ranking quality. If

�M1(Ai, Bi) > �M1(Ai, Ci;j) and �M2(Ai, Bi) < �M2(Ai, Ci;j),

or �M1(Ai, Bi) < �M1(Ai, Ci;j) and �M2(Ai, Bi) >

�M2(Ai, C
i;j
), then a switch will take place, in which case the

crossover point v can be determined by solving the following

linear equation:

v ��M1�Ai;Bi� � �1ÿ v� ��M2�Ai;Bi�
� v ��M1�Ai;Ci;j� � �1ÿ v� ��M2�Ai;Ci;j�:

This crossover point is calculated for all triplets of Ai, Bi and

Ci;j that do cross over and the direction of the switch is

recorded as +1 if Bi becomes ranked more highly than the mis-
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match Ci;j as u goes to 1 (thus, increasing the overall ranking

quality) or ÿ1 if the ranking of Bi drops below that of Ci;j.

After all of the possible crossover points are calculated,

they are analyzed to determine the single best point v* which

maximizes the number of positive crossovers (with direction

+1) while minimizing the number of negative crossovers (with

direction ÿ1). This is performed by sorting the crossover

points on the values v. An accumulator is then initialized to 0

and swept through the list of crossovers in sorted order,

incrementing by 1 for each positive crossover and decre-

menting by 1 for each negative crossover. The crossover point

v* where the accumulator reaches its maximum value will be

exactly the value of u at which the ranking quality of the

mixture RQ(mix) [where Mmix = u�M1 + (1 ÿ u)�M2] is most

improved.

This core computation only optimizes the weight of one

feature at a time against all the others. Hence, it must be

repeated to ®nd the best overall combination of weights for

the weight vector. We use a greedy search procedure based on

a randomized version of hill-climbing (Russell & Norvig,

1995) as described above (i.e. select a random feature Fj and

recalculate its weight u etc.). Features that are relevant (in the

context of all the others) will increase in weight when selected

and noisier features that tend to interfere with matching will

see their weights drift toward 0. This process is iterated until

the overall ranking quality of the weight vector stops

increasing. It is important to note that as with all greedy search

procedures, Slider is not guaranteed to ®nd the globally

optimal weight vector (which is computationally intractable),

but only a local optimum. However, by re-running the search

multiple times, it can be observed that the resulting ranking

qualities are fairly consistent, suggesting convergence. Also,

owing to the randomness in the algorithm (i.e. the order in

which features are selected for re-weighting), the ®nal weight

vectors themselves can be different. Hence there is no `abso-

lute' optimal weight for any individual feature; weights are

only meaningful in combinations. For example, if there are two

highly correlated features, sometimes one will get a high

weight and the other will be near 0, and other times the

weights will be reversed.

Like the creation of the feature database, the weighting of

the features is performed prior to the TEXTAL model-

building process. A given set of weights is speci®c for a

particular database, so that a new database consisting of

different proteins would require re-evaluation of the feature

weights.

3.6. Evaluation of the accuracy in the TEXTAL models

To evaluate the accuracy of the TEXTAL method, electron-

density maps of three different proteins of known structures

were modeled. Because TEXTAL does not require or utilize

any amino-acid sequence information when choosing the best

match for a region, the amino-acid types in the generated

model may differ from those in the actual protein. The accu-

racy of the TEXTAL model is ®rst evaluated by an amino-acid

sequence-identity comparison. The similarity of the side-chain

structures, evaluated using a `similarity matrix', was also used

as a measure of the models' accuracy (see Table 3). The

similarity matrix treats residues as similar if they are from the

same category of amino acids, where the categories are

de®ned as listed in Table 5. The categories are formed from

residues that are (i) identical, (ii) isosteric (e.g. threonine and

valine) or (iii) structurally similar up to the 6.0 AÊ cutoff (e.g.

the aromatics). This similarity matrix was chosen since the

features are extracted over a maximum radius of 6.0 AÊ and the

difference between a phenylalanine and a tyrosine, for

example, may be apparent only beyond 6.0 AÊ , thus the

features will be unable to distinguish them. All aromatic

residues are considered structurally similar in this matrix and

histidine is also included with the aromatics, so that a His

match for a Phe is considered similar. It is important to note

that the shapes of the density in 6.0 AÊ radius spheres may be

very similar for amino acids that have little or no chemical or

physical similarities (such as Leu and Asp or Ser and Cys). The

percentage similarity based on this matrix is the total number

of similar residues divided by the number of positions. The

similarity matrix reveals structural accuracy not re¯ected by

the sequence-identity measurement.

The difference between the model and the real structure is

further evaluated by measuring the r.m.s.d. between the

atomic coordinates of the model built and the true coordi-

nates. The r.m.s.d. is the average of all of the differences

between the atoms in one region with the nearest corre-

sponding atoms in the other region. If the number of atoms

differ between two regions, which can easily happen when the

model and the correct structure are of different residue types,

some atoms in one region will not have counterparts in the

other region. The r.m.s.d. calculation takes into account only

those atoms that have reasonable counterparts, i.e. within 3 AÊ .

Table 2
Feature weights used in the TEXTAL experiments, listed in order of
relevance.

Both the weights and the optimal radii were calculated using the Slider
algorithm.

Feature Weight Radius (AÊ )

Distance to center of mass 0.183103 5.0
Ratio of moments 1 and 3 0.153815 4.0
Ratio of moments 1 and 3 0.136521 5.0
Skewness 0.080056 3.0
Skewness 0.055487 6.0
Ratio of moments 1 and 2 0.055124 4.0
Median spoke angle 0.052865 6.0
Minimum spoke angle 0.051494 4.0
Skewness 0.049710 5.0
Ratio of moments 1 and 2 0.038135 5.0
Maximum spoke angle 0.037110 4.0
Ratio of moments 1 and 3 0.031616 3.0
First moment of inertia 0.022025 6.0
Median spoke angle 0.019343 4.0
Minimum spoke angle 0.015231 6.0
Distance to center of mass 0.008193 3.0
Spoke triangle area 0.007749 3.0
Maximum spoke angle 0.001490 3.0
Median spoke angle 0.000618 3.0
Kurtosis 0.000196 6.0



4. Results

To evaluate the utility of pattern matching for interpreting

electron-density maps, we have taken the preliminary step of

modeling regions in `unknown' maps with the assumption that

the �-carbon positions are known a priori. This limitation will

eventually be removed, but it allows us presently to evaluate

the pattern-matching capabilities of the TEXTAL method

separate from the issue of locating C� atoms. We also report an

analysis of the sensitivity to errors in C� coordinate estimates.

4.1. Feature weights

The algorithm Slider was used to determine appropriate

weights for the 76 features (19 unique features for four

different radii) for matching regions in TEXTAL. To deter-

mine the optimal weights for our features, it is ®rst necessary

to obtain a representative set of regions containing highly

similar density and other regions that do not match. We

selected a randomly chosen subset of 500 pairs of regions from

our database that had high density correlations and 500 other

random regions for each that acted as non-matches. Based on

visual inspection of the results, we observed that a density

correlation of 0.7 or greater typically indicates a suf®ciently

similar pattern of density; hence, we use cc � 0.7 as the de®-

nition of a good match.

Using the Slider algorithm, the mixture of weights for the

feature set was optimized to discriminate between matching

(cc � 0.7) and non-matching (cc � 0.7) regions. The features

that contributed to improving the overall ranking quality of

the matches were returned with the best weights associated

with them and these features are shown in Table 2. Several

features, such as the ratio of the ®rst and third moment of

inertia, were found to be relevant at different radii (e.g. 3, 4

and 5 AÊ ), each contributing unique information. This mixture

of weights gives a ranking quality of 0.865,

meaning that true matches were ranked by

feature differences among the top 13.5% of

all candidates on average. We note that

owing to randomization in the Slider algo-

rithm, it is possible that there are other

mixtures of features that give equally high

performance.

4.2. Modeling unknowns

Three different proteins from the Protein Data Bank were

used as `unknowns' for our experiments, representing varying

levels of complexity. Glucagon, 1gcn, contained the fewest

residues (29) and possesses the simplest secondary structure: a

single �-helix. The other two proteins, ferredoxin reductase

(1fnb; 296 residues) and p53 tumor repressor (1tup; 196 resi-

dues), are considerably more complex structures, having both

� and � structure as well as stretches of random coil.

The features of each `unknown' map were extracted at each

C� position of the unknown structure in spheres which ranged

from 3 to 6 AÊ in radius. The features of each region in the

unknown were then compared with all of the 54 164 regions in

the database and a feature difference (�F) score was calcu-

lated. For each of the top N = 2000 most highly ranked regions,

the known electron density of the region from the database

was rotated and superimposed onto the unknown region using

the moment-of-inertia alignment described above and the

correlation coef®cient cc was calculated within the side-chain

axis cylinder. The region with the highest density correlation

was selected as the best match and the corresponding rotation

and translation was applied to atoms retrieved from the

matched region in the known structure to create TEXTAL's

estimation of the local structure in the unknown region.

As shown in Table 3, TEXTAL was able to identify regions

with a high overall correlation to the electron density around

the correct structures for the unknowns. The modeling was

performed entirely automatically by TEXTAL (i.e. there was

no manual intervention or post-processing) and took around

30 s per residue (with N set to 2000) on an SGI Origin 2000.

Although there is a fairly wide range of correlations for the

three proteins, the average in all cases was near 0.9, well above

our observations of a minimum cutoff for a reasonable match.

These results indicate that our matching process is able to

identify similar regions of electron density.

The accuracy of the TEXTAL models was measured in

terms of the amino-acid identity and structural similarity (via

the similarity matrix de®ned above). Sequence identity was

41.4% for 1gcn, 40.0% for 1tup and 50% for 1fnb. The simi-

larity matrix evaluation showed that our model of 1gcn was

77.6% similar to the actual structure, while the 1tup and 1fnb

models were 63.3 and 69.4% similar, respectively, to the

correct structures.

In addition to frequently recognizing side-chain types, the

generated structures also had conformations similar to the

correct ones. Shown in Table 4 is the r.m.s.d. between corre-
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Table 3
Correlation coef®cients of the models built by TEXTAL and the original structures.

PDB
ID

Number of
residues

Average
correlation

Maximum
correlation

Minimum
correlation

Sequence
identity (%)

Structural
similarity (%)

1gcn 29 0.88 0.95 0.73 41.4 77.6
1tup 196 0.87 0.98 0.64 40.0 63.3
1fnb 296 0.89 0.98 0.67 50.0 69.4

Table 4
R.m.s.d. of corresponding atoms.

Overall r.m.s.d. calculation when side chains were included was performed by
determining the closest neighbor in the known structure for each candidate
atom and measuring the distance between all of these pairs. No information
regarding the identity of the atoms was involved and if a pair of atoms was
separated by more than 3 AÊ they were not included in the calculation. Flipped
residues were excluded in the r.m.s.d. calculations.

R.m.s.d. (AÊ )

Protein
Overall (incl.
side chains) CÐC OÐO NÐN

No.
¯ipped % ¯ipped

1gcn 0.70 0.80 0.92 0.37 5 17
1tup 0.69 0.45 0.76 0.52 18 9
1fnb 0.62 0.33 0.72 0.39 15 5
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sponding coordinates in the actual `unknown' structure and

the model built by TEXTAL. Note that during the model-

building process, the matching region found in the database

for a given unknown region could be associated with the

region in the opposite backbone con®guration where the

carbonyl C atom is mapped onto the backbone N atom and

vice versa or where the side-chain atoms are mapped into

backbone positions. We refer to these residues as `¯ipped'

positions; the number of such ¯ipped residues is also reported

in Table 4. Although no information was provided regarding

the orientation of the polypeptide chain during pattern

matching, the occurrence of ¯ipped positions was relatively

low (5±17%). Flipped residues dramatically misrepresent the

accuracy of the model when included in the r.m.s.d. calcula-

tion, but they can easily be repaired in the model by post-

processing (i.e. by enforcing a consistent directionality to the

peptide chain). Also shown in Table 4 are the r.m.s.d.s of the

main-chain atoms (besides C�); the ¯ipped positions were not

included in this measurement.

4.3. Examples of regions modeled in the test maps

Glucagon contains 29 residues in a single �-helix. When

TEXTAL modeled 1gcn, it was able to match structurally

similar side chains 77.6% of the time and only ®ve of the 29

positions had ¯ipped backbones. Because this is a different

type of similarity matrix than is customarily used in

biochemistry (a structural similarity as opposed to chemical

similarity), it is instructive to consider what a similarity score

of this magnitude indicates. For comparison, the average

structural similarity as measured by this matrix is only 15% for

four randomly picked proteins of an equal number of amino

acids. Therefore, 77.6% similarity is well above random

chance. A superposition of 1gcn with the TEXTAL model is

shown in Fig. 3. Examples of similar amino-acid matches

include placing a His for Phe6, a Leu for

Asp21 and a Glu for Gln24. Some of the

other matches that were returned by

TEXTAL contain one more or one

fewer C atoms, for example, Gln for

Asn28.

The modeling results for the p53

tumor repressor (1tup) were equally

encouraging, especially given the rela-

tive complexity of the secondary struc-

ture. 1tup contains three �-helices and a

total of 11 �-strands. Out of the 196

residues, TEXTAL identi®ed 40% of

the amino acids exactly and 63.3% were

structurally similar. The model also

contains several fairly long contiguous

segments where TEXTAL performed

quite well, producing many structurally

similar and identical matches. The

longest stretch of good matches is

between residues 147 and 155 (except

one position containing a match

differing by one carbon). This region,

which also contains three consecutive

prolines successfully matched by

TEXTAL, is shown in Fig. 4. There are

several such highly accurate regions in

the 1tup model; however, these regions

were interspersed with regions where

TEXTAL was not able to produce such

good matches. These long matching

regions were neither consistently found

in the interior or the exterior of the

protein, nor were they consistently in

the same secondary structure (i.e. all

�-helical or �-strand).

The ferredoxin reductase structure

contains 296 amino-acid residues. The

average cc for all positions in the

TEXTAL model is slightly higher (0.89)

Figure 3
Superposition of 1gcn and model built by TEXTAL. This ®gure and all color ®gures were produced
using the program SPOCK (Christopher, 1998). The sequence on top is for the model built by
TEXTAL, as is the structure in green.

Figure 4
Region in 1tup compared with the model built by TEXTAL. Shown are residues 147±155. The ®gure
includes a 1� contour of the electron-density map of 1tup. In this and in Fig. 5, the TEXTAL model
C atoms are in white and the C atoms of the original PDB structure (here, 1tup.pdb) are in light
blue; all N atoms for both are dark blue, all O atoms are red and all S atoms are yellow.



than for 1tup (0.87) and the percentage of ¯ipped residues is

lower (5% for 1fnb and 9% for 1tup). 50% of the 296 residues

were matched with identical amino-acid matches and 69.4% of

the matches were similar by the matrix score. An example

region of well matched positions in the TEXTAL model of

1fnb is shown in Fig. 5. The atomic r.m.s.d. for this region was

only 0.27 AÊ .

Shown in Table 5 is a more detailed description of

TEXTAL's ability to match similar regions. The table is a

confusion matrix which shows the actual amino-acid classes in

the rows, while the columns are the amino-acid classes found

by TEXTAL. For example, there are 47 residues of the short-

branched type (I, T or V). Of the 47 residues, 45 were matched

with this type of residue, one with either S or C and one with Q

or E. These are the same categories of

matches used in the similarity matrix

score. Qualitatively, of the nine cate-

gories, TEXTAL appears to have the

most dif®culty modeling the amino

acids with long ¯exible side chains

(RKM). This could arise from a

combination of their reaching beyond

the radii of feature calculations and/or

increased degrees of freedom.

4.4. TEXTAL modeling of rat intest-
inal fatty acid binding protein from
newly collected X-ray data

X-ray diffraction patterns were

collected from crystals of recombinant rat intestinal fatty acid

binding protein (iFABP). The data were collected under

cryogenic conditions using MacScience dual image-plate

system on a Rigaku RU-200 generator. Indexing and scaling of

the data was performed using the software packages

SCALEPACK and DENZO (Otwinowski, 1993) and the map

was calculated and re®ned using CNS (Brunger et al., 1998).

The data were 91% complete to 1.62 AÊ ; however, the electron-

density map used on TEXTAL was calculated to the medium

resolution of 2.8 AÊ in order to match the database. The crystal

structure for rat iFABP was previously published (Scapin et

al., 1992; PDB code 1ifc) with an R factor of 16.9% from

diffraction data to 1.19 AÊ resolution. The new cryogenic data

were used to obtain a map quickly (from X-ray diffraction

data but not optimally re®ned) for testing the accuracy of

TEXTAL. Based on these new data, the model was re®ned to

an R factor of 21.1% (Rfree 24.9%) (including 121 new cryo-

data water molecules).

The automated model construction for iFABP using

TEXTAL followed the same method used for modeling the

test proteins. Features were extracted in spheres centered at
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Table 5
Confusion matrix of similarities in 1fnb.

The leftmost column shows the amino-acid groups in the actual structure and the number of occurrences of
this group in the structure. (One-letter amino-acid names are used.)

TEXTAL
model FYWH:28 QE:29 DNL:54 SC:26 ITV:59 RKM:34 G:20 A:30 P:14

PDB:No.
FYWH:36 25 2 3 1 3 1 1
QE:31 2 16 1 9 3 1
DNL:52 1 40 4 5 2
SC:20 2 12 3 2 1
ITV:47 1 1 45
RKM:54 1 9 8 7 6 18 5
G:26 20 6
A:17 1 16
P:13 13

Figure 5
Superpositions of 1fnb with the TEXTAL model. A (1�) contour of the
electron-density map of 1fnb.pdb is included. The region shown contains
residues 37±40, where all positions were matched correctly in amino-acid
type: Pro, Tyr, Val, Gly.

Figure 6
Superpositions of TEXTAL model and the known structure of 1ifc.pdb
(intestinal fatty acid binding protein). The structure in green is the model
built by TEXTAL.
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130 C� atoms obtained from the re®ned structure and the

density correlations were calculated. For each match, 2000

density regions were retrieved by feature difference and the

one region that matched with highest correlation was returned

and incorporated into the model. TEXTAL matched 35.4% of

the regions with the correct amino acid and 54.6% of the

selections were of a similar type (Table 6). The model matched

the original re®ned structure to 0.74 AÊ r.m.s.d. Only 14 of the

130 positions (10.7%) were returned in a ¯ipped con®gura-

tion. Shown in Fig. 6 is a region of the model built by

TEXTAL superimposed with the original re®ned structure.

This test shows that TEXTAL can produce accurate models

with a map calculated from X-ray diffraction data and does

not require arti®cially generated maps to be successful.

4.5. Relationship between electron-density patterns and
molecular structure

Since TEXTAL uses the density correlation coef®cient as

its ®nal measure of similarity, it is important to establish the

relationship between cc and atomic r.m.s.d. Fig. 7 plots density

cc versus atomic r.m.s.d. between corresponding regions in the

original structures for all three test proteins and the models

built by TEXTAL. The relationship between high cc and low

r.m.s.d. suggests that looking for regions with similar patterns

of density is a reasonable strategy for ®nding good matches in

terms of atomic structure. However, because some high-cc

regions also show relatively high r.m.s.d., not all regions in the

test maps contain well matching regions in the database. Still,

over 75% of the regions had matching regions with density

correlations greater than 0.81 and matched with an r.m.s.d. of

less than 0.9 AÊ .

4.6. Sensitivity of models to errors in Ca coordinates

One of the limitations of the experiments described so far is

that the locations of C� atoms were presumed to be known

a priori; i.e. TEXTAL was used to model regions centered on

C� coordinates derived from a PDB ®le. This information will

clearly not be available in real uninterpreted maps. However,

one of several methods could be used to estimate the locations

of C� atoms in a new map. For example, a skeletonization

algorithm such as BONES could be used to pick coordinates

along the main chain that are likely candidates for C� positions

(such as at branch points). Alternatively, we are developing a

pattern-recognition routine to accurately identify C� atoms in

a map by training a neural network to use features of the local

pattern of electron density to predict how far away a given

lattice point is from a true C� atom.

Regardless of the approach to predicting C� positions in a

map, there will almost certainly be some error in the estimates

of the coordinates. Such errors could potentially cause

problems for TEXTAL, since it will be attempting to model

regions whose centers are offset from a true C� atom with a

database of regions precisely centered on C� atoms. Therefore,

we tested TEXTAL's sensitivity to errors in the C� coordinate

estimates. In this experiment, we selected 5000 regions

randomly from our database of 200 back-transformed maps.

Each of these was centered on a C� atom. We ran TEXTAL on

these regions to determine the highest density correlation that

could be achieved by any other match in the database. A

random vector was then added to offset the center of the

region from the C� (uniform sampling ofÿ1.5 . . . +1.5 for X, Y

and Z), producing errors of 0±1.9 AÊ in arbitrary directions.

Finally, TEXTAL was run a second time on each of these

regions to ®nd the match with the highest density correlation,

given the random shift.

Fig. 8 shows the ratio of the maximum density correlation of

each region with the offset to that for the unshifted region as a

function of the magnitude of the offset vector. While there is a

great deal of variation in how much the offset decreases the

quality of matches, it can be observed that the general trend is

that regions with a high density correlation (�90%) are

retrieved for regions offset by up to around 0.8 AÊ . Beyond this

point, regions not centered on C� atoms increasingly fail to

have high-quality matches in the database. This quanti®es

TEXTAL's tolerance for errors in the initial estimates of C�

locations.

5. Conclusions

In the work reported here, we have described a new approach

for interpreting electron-density maps, implemented in a

system called TEXTAL. TEXTAL was used to model three

test proteins from their electron-density maps and the co-

ordinates of their C� atoms. The potential of the method is

demonstrated by the high structural similarity of the TEXTAL

Figure 7
Plot of atomic r.m.s.d. as a function of density correlation coef®cient
between regions. The error bars show standard error.

Table 6
TEXTAL modeling of iFABP.

Number of
residues

Average
correlation R.m.s.d. (AÊ )

Percent
¯ipped

Sequence
identity (%)

Structural
similarity (%)

130 0.834 0.74 11 35.4 54.6



models to the original protein structures. These preliminary

tests show that TEXTAL is able to build models that are

structurally similar to the original proteins regardless of

whether the amino-acid identity is correct. The r.m.s.d. scores

are low, in the range 0.6±0.7 AÊ . The unknowns used in our

tests contained a wide range of secondary structures and

TEXTAL was able to model these differing structures. Except

for the modeling of iFABP, the electron-density maps used in

testing and contained in the database are calculated by Fourier

transformation from known structures at medium resolution

(�2.8 AÊ ). A real MIR map for iFABP at a medium resolution

of 2.8 AÊ was also successfully modeled by TEXTAL.

These results validate the usefulness of pattern recognition

as a technique for electron-density map interpretation and

suggest that TEXTAL could be an important tool for building

protein structures. TEXTAL is able to build fairly accurate

models of proteins from medium-resolution density maps

(�2.8 AÊ ) in a few hours using only the initial estimates of the

�-carbon positions; the requirement for knowing the �-carbon

coordinates will be removed in a future version. This auto-

mated approach represents an important advance in X-ray

crystallography. Other computational methods currently

available for the interpretation of electron-density maps

include graphical or mathematical density-analysis programs

(Jones et al., 1991; Fortier et al., 1997; Kleywegt & Jones, 1997;

Leherte et al., 1994), along with fragment-®tting approaches

(Holm & Sander, 1991; Levitt, 1992). TEXTAL is distinct

from these previous methods because it uses pattern matching

of the electron density to recognize and model regions in an

unknown map. It assigns atomic coordinates to the unknown

map based on similar regions in a database of previously

determined structures. This approach is a form of instance-

based or nearest-neighbor learning (Aha et al., 1991), where

the regions in the database provide example cases from which

to model unknowns. This form of pattern recognition has not

been applied to X-ray crystallography; previously the poten-

tial for building accurate protein structures is supported by

our preliminary results.

There are several ways in which TEXTAL could be

improved, such as by developing new features to improve the

®delity of the matching or by specializing the database for

speci®c secondary or side-chain types (e.g. rotamer classes).

Another signi®cant means for improving the overall accuracy

is to add post-processing procedures to re®ne the models. For

example, the method by which the best match is chosen from a

list of candidates is a prime target for improving TEXTAL. In

these preliminary experiments, the choice for the best match

in the database was based solely on the region which gave the

highest density correlation. Many of the other matches for the

same region have similar cc's, but correspond to different

amino-acid types. Post-processing steps that consider several

of the top matches could improve model accuracy, such as by

using consensus among the top matches to choose the best

residue type. The predicted structures for some neighboring

regions may also aid in choosing the best match, for example,

by rejecting ¯ipped candidate residues based on the orienta-

tion of the neighboring residues' backbone atoms. Also,

energy minimization (e.g. real-space re®nement) could be

applied to the ®nal models to improve the r.m.s.d. by regu-

larizing the structures and adjusting the ®t to the density.

Finally, our current experiments make no use of the amino-

acid sequence, although it is typically known. Future experi-

ments could exploit knowledge of the amino-acid sequence in

order to determine which of the best-correlated regions to

choose by enforcing consistency with the identities of neigh-

bors, for example, by using a dynamic programming algorithm

(Baxter et al., 1996). However, even in its current imple-

mentation, the TEXTAL approach is able quickly to build

fairly accurate models of entire proteins from medium- to low-

resolution data in only a few hours.

This work was supported by the the Robert A. Welch

Foundation and the National Institutes of Health Grants GM

45859 and GM 59398.
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