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The ability to recognize disulfide bridges automatically in electron density maps

would be useful to both protein crystallographers and automated model-

building programs. A computational method is described for recognizing

disulfide bridges in uninterpreted maps based on linear discriminant analysis.

For each localized spherical region in a map, a vector of rotation-invariant

numeric features is calculated that captures various aspects of the local pattern

of density. These features values are then input into a linear equation, with

coefficients computed to optimize discrimination of a set of training examples

(disulfides and non-disulfides), and compared with a decision threshold. The

method is shown to be highly accurate at distinguishing disulfides from non-

disulfides in both the original training data and in real (experimental) electron

density maps of other proteins.

1. Introduction

Disulfide bridges, formed through covalent cross-linking

between cysteine side chains, are an important component of

protein structure, constituting the primary exception to the

linear nature of the peptide backbone. Disulfide bridges occur

in approximately one out of every four proteins currently

listed in the PDB (23%, using the PDBSelect non-redundant

subset), tending to be more prevalent in small proteins (<100

amino acids) or secreted proteins (which must retain stability

in a reducing environment), with no apparent bias for �, �,

�/�, or � + � fold classes. Generally, disulfides are not thought

to participate in enzymatic functions, but rather to add

structural stability and reduce entropy due to internal thermal

motions (Creighton, 1988), and are occasionally involved in

coordination of metal ions, such as the classic FeS cluster. For

these reasons, cysteines are among the most highly conserved

residues, and their pattern in a sequence can often be used to

help identify members of a protein super-family.

An automated method for recognizing disulfide bridges in

electron density maps would be useful for protein model

building, whether it is done manually, using graphical software

such as O (Jones et al., 1991), or with an automated model-

building program, such as ARP/wARP (Perrakis et al., 1999),

Resolve (Terwilliger, 2000), XPowerFit (Oldfield, 1996), Maid

(Levitt, 2001), or TEXTAL (Ioerger & Sacchettini, 2003). In

an uninterpreted map, disulfide bridges introduce ambiguities

in the density by creating non-linear connections which could

potentially cause errors in backbone tracing. Despite the

presence of sulfur atoms in the cysteines, there is no intrinsic

characteristic of a disulfide bridge that can be observed

directly in a density map. (At higher resolution, the sulfur

atoms can sometimes be recognized by their bulbous density,

due to the larger orbitals; however, at lower resolutions, e.g.

> 2.5 Å, electron density generally looks the same regardless

of atom type.) An automated routine for localizing disulfide

bridges in a map would help the crystallographer make correct

decisions in tracing the backbone and building side chains.

Furthermore, it would facilitate the process of sequence

identification by anchoring local fragments on both sides to

regions in the amino acid sequence containing cysteines.

Clearly, prior knowledge of the location of disulfide bridges in

an electron density map would benefit automated model-

building programs as well.

Disulfide bridges can be detected automatically in electron

density maps using pattern-recognition techniques. A method

based on feature extraction and linear discriminant analysis is

described. First, numeric feature vectors are calculated that

characterize patterns of density in local regions of a map, and

then a linear discriminant model is applied to the vectors to

estimate the degree to which the regions resemble disulfides.

The parameters of the linear discriminant are derived from a

representative training set of density patterns associated with

known disulfides and non-disulfides. The hypothesis is that the

local shape of the density, for example, the typical spiral or

twist, can be used to determine the presence of a disulfide.

However, part of the challenge is that the shape of a disulfide

might be confused with other short, non-branched structures,

such as lysine or methionine side chains, or even glycine

backbones. Therefore, the extracted features must be

adequate to capture the disulfide pattern and to discriminate it

from all other possibilities. The results demonstrate that this

linear discriminant approach can be used to identify disulfide

bridges with high accuracy in uninterpreted electron density

maps, even in the presence of a moderate amount of noise (e.g.

phase error) in experimental data.
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2. Background

Disulfide bridges are formed from the covalent linkage

between the S
 atoms of two cysteine residues, arbitrarily

separated in sequence. The length of a disulfide, as

measured by C�—C� distance, typically ranges between 4.5

and 6.5 Å (Thornton, 1981). Disulfides come in one of three

common conformations: a left-handed twist, a right-handed

spiral, and a less-frequent extended (straight) conformation,

which is slightly longer than the other two (up to 7.5 Å)

(Richarson, 1981). These left- and right-handed conforma-

tions are determined by the dihedral angle across the S
—S


bond (restricted to �90� due to steric constraints), and the

rest of the atoms adopt a corresponding low-energy posi-

tion, resulting in the preference for a spiral or twist

conformation.

Disulfide bridges can be recognized visually in an unin-

terpreted map based on their local density pattern, or shape,

as shown in Fig. 1. To emulate this ability in an automated

procedure, both feature extraction and linear discriminant

analysis can be used. The analysis is based on a spherical

region of density centered at the midpoint of a hypothetical

S
—S
 bond of a disulfide and extending out 4–5 Å in radius:

just enough to cover the C� atoms in the backbones. Numeric

features can be computed that capture salient aspects of the

shape of the density in the region that are characteristic of

disulfides. However, it is essential that these features be

rotation-invariant, such that their values would not change if

the region were rotated arbitrarily in three dimensions, since

disulfide bridges may occur in any orientation in space. Such a

set of rotation-invariant features has been developed for the

TEXTAL model-building program, and is described by

Holton et al. (2000). The features include such geometrical

properties as distance-to-center-of-mass and moments of

inertia, as well as statistical properties like mean, standard

deviation, and higher-order moments of the distribution of

density in the region. These features (19 in all) are easily

shown to be rotation-invariant, they differ from region to

region, and yet they show general similarities for regions with

similar patterns of density.

Once regions of density have been reduced to numeric

feature vectors, linear discriminant analysis (LDA) can be

used to learn how to recognize the difference between

members of distinct classes. The goal of the approach is to

capture the disulfide/non-disulfide distinction, i.e. to be able to

distinguish all disulfides as a group from all other components

of protein structure, even in spite of the existence of left- and

right-handed conformational sub-classes. Therefore, a repre-

sentative set of disulfides and non-disulfides is needed

(discussed below in x3), in order to train the linear discrimi-

nant model. Let these two sets of example regions be called X

and Y, respectively (X for disulfides and Y for non-disulfides),

with p and q instances each: |X| = p and |Y| = q. Let the feature

vectors calculated for each instance in both sets be repre-

sented as: X = {x1, . . . , xp}, where xi = hxi,1, . . . , xi,ni, and

similarly for the non-disulfides. Note that all feature vectors in

both sets have the same dimensionality, n.

Given two sets of numeric feature vectors, a linear discri-

minant can be developed to classify feature vectors of future

examples into the most appropriate class. A linear discrimi-

nant is a set of coefficients for a linear equation such that,

when applied to a given feature vector, it predicts it is a

member of class 1 when the value of the linear combination

exceeds a decision threshold (typically 0), or class 2 otherwise.

The discriminant can be represented by the following equa-

tion:

Pn

i¼1

aixi � �;

where the coefficients ai are the parameters of the linear

discriminant model, the xi are the individual feature values,

and � is the decision threshold.

Linear combinations are simple to compute. However, it is

critical to determine a set of coefficients that gives the optimal

discrimination between the two classes. One might think that a

reasonable strategy would be to choose the ai to represent the

vector separating the means of the two classes, a = (lX ÿ lY),

effectively determining to which centroid the region repre-

sented by the vector is closest by projecting each point onto

this line. However, this approach does not necessarily produce

optimal classification. In 1936, R. A. Fisher introduced an

alternative discriminant model that is optimal. By minimizing

the risk of classification error, Fisher found that the optimal

direction in space on which to project instances, maximizing

class separation, is given by: [�ÿ1 �(lX ÿ lY)]T, where � is the

covariance matrix, �ij = (1/p)
Pp

k¼1ðxk;i ÿ �iÞ � ðxk;j ÿ �jÞ.
Hence the corresponding discriminant equation becomes

�
xÿ 1

2ðlX þ lY Þ
� � ��ÿ1 � ðlX ÿ lY Þ

�T � 0;

with the center of all the data (averaged over both classes)

subtracted from the query feature vector x, and using 0 as the

decision threshold. The covariance matrix can easily be

computed (and inverted) off-line, and the product with the

difference of the means forms a simple set of coefficients, a =

[�ÿ1 � (lX ÿ lY)]T. Given a new test vector, it is a simple

matter to subtract the overall mean, l = 1/2(lX + lY), and

multiply by the coefficients to yield d = a � (x ÿ l). If d � 0,

then that instance is predicted to be a member of class 1 (e.g.

disulfide); otherwise class 2 (non-disulfide).

3. Methods

3.1. Training set

To train the linear discriminant, representative sets of

disulfide and non-disulfide regions are needed. For the disul-

fide set, a subset of the PDBSelect was searched for instances

where two S
 atoms were within 2.2 Å of each other (since the

mean interatomic distance in disulfide bridges is 2.05 Å). The

PDBSelect contains a curated list of high-quality non-redun-

dant (<25% pairwise homology) structures in the PDB

(Hobohm et al., 1992); only proteins with at least 75 amino

acids that had been determined at a resolution of 3 Å or better

were used. A total of 98 instances of disulfides were identified
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among 47 such proteins, forming the set X (class 1) for training

the classifier. The specific coordinates taken to be the location

of the disulfide were the midpoint of the two S
 atoms, which is

typically near (within 1 Å of) but not always right on the

center of mass of the two side chains, nor the axis between the

C� atoms, due to the spiral or twist. For each of the 47 proteins,

back-transformed electron density maps were generated at

2.8 Å using calculated structure factors, with the map borders

adjusted to cover the monomer. This resolution was chosen

because many maps, e.g. those derived from MAD data at

synchrotrons, come out in this medium-resolution range.

For the non-disulfide set (Y, class 2), points were chosen

throughout a representative protein known not to contain any

disulfide bridges: 1FDI (formate hydrogenase), a large �/�
protein with 715 residues. A back-transformed map was also

calculated for 1FDI at 2.8 Å. Then this map was traced using

the skeletonization routine in TEXTAL (Ioerger & Sacchet-

tini, 2002), producing a set of 7152 pseudo-atoms spaced

roughly 0.5 Å apart along the medial axis of the density

contours throughout the protein (including backbone and side

chains). Each of these coordinates was taken to be an example

of a non-disulfide.

3.2. Feature extraction and calculation of coefficients

For each of the 98 examples of disulfides and 7152 examples

of non-disulfides, 76 features were calculated to form feature

vectors. The features were those described in (Holton et al.,

2000), used for pattern matching in the TEXTAL model-

building program. The features consist of 19 distinct values

reflecting local statistical or geometric properties of the

density, evaluated at four different radii, 3, 4, 5 and 6 Å, since

some features capture different information in spheres of

different size.

Once these feature vectors were calculated for the two sets,

the 76 � 76 covariance matrix � was computed and inverted

(using a standard matrix-inversion algorithm written in C).

Then it was multiplied by the vector difference between the

centroids of the two class, lX ÿ lY, to give a vector of coef-

ficients, a = [�ÿ1 � (lX ÿ lY)]T. Finally, the global mean was

calculated: l= 1/2(lX + lY). The vectors a and l constitute the

parameters of the linear discriminant model.

3.3. Procedure for recognizing disulfides in new maps

To apply the linear discriminant to a new electron density

map, the following steps are taken. First, the map should be

reduced to 2.8 Å by limiting structure factors, if higher reso-

lution data are available. (If resolution is slightly worse than

2.8 Å, say up to 3 Å, the procedure will still work, though its

accuracy drops off as density patterns begin to look more

diffuse than those on which the discriminant was trained.)

Then the map is traced using the skeletonization routine in

TEXTAL (also requires scaling the density using the capra-

scale routine in TEXTAL). This produces a PDB file

containing coordinates of pseudo-atoms along the medial axis

of the contours; if a disulfide occurs, it is presumed to be

centered on (or close to) one of these points. However, since

disulfide bridges are known not to occur in terminal side

chains, the branches of the trace may be stripped off using a

linearization routine also in TEXTAL (which leaves long,

contiguous skeletons mostly along the backbone of the

protein, but also connected through disulfide bridges and

other close contacts). For each coordinate along the linearized

trace, the 76-dimensional feature vector is calculated

describing the local pattern of density in the surrounding

sphere. This vector is input into the linear equation with the

model parameters to compute a value d = a � (x ÿ l). If d � 0,

then it is predicted to be a disulfide, or more specifically, in the

vicinity of the midpoint of a disulfide bridge. The steps are

summarized in Fig. 2.
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Figure 2
Procedure for determining whether a given region of density represents a
disulfide bridge using a linear discriminant.

Figure 1
A disulfide bridge connecting a helix and a strand in a 2.8 Å map. The
backbone trace among C� atoms is shown in green. The density shown
represents a contour level of approximately 1�. The disulfide bridge,
circled, can be seen to have a slight bulge and twist.
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4. Results

When the linear discriminant model is applied to examples in

the original training set, the classification was found to be

highly accurate at recognizing disulfide bridges. Among the 98

examples of true disulfides, 97/98 had scores � 0. Among the

7152 non-disulfides, 7066/7152 (98.8%) had negative scores.

The number of false positives can be reduced by 50% (from 86

to 35) by increasing the decision threshold � from 0.0 to 2.0.

This increases the accuracy of prediction on non-disulfides to

99.5%, while losing only one more true positive (96/98).

When the linear discriminant method is run on back-

transformed electron density maps of proteins containing the

example disulfides and predictions are made at the coordi-

nates of each trace point, some interesting observations can be

made about the locations of the points receiving positive

scores. First, the 3–4 trace points closest to the midpoint of the

S
—S
 bond tend to all have positive scores (see Fig. 3). It is

important to note that no trace points necessarily fall exactly

on the coordinates of the S
—S
 midpoint, although the

discriminant model was specifically trained with such points,

and only such points, as positive examples. (Recall that the

trace is constructed from analysis of the density in an unin-

terpreted map and only follows contours, knowing nothing

about atomic coordinates.) However, there is almost always a

trace point within 0.5 Å of the true S
—S
 midpoint, given

their 0.5 Å spacing and the high density across the bond.

In fact, it turns out that there is enough flexibility in the

discriminant model that two trace points on either side (up to

about 1 Å away) are recognized as disulfides. This means that

the local density patterns and hence feature vectors are all

sufficiently similar, despite the small shifts in the center of the

analysis region. This is fortunate because it implies that: (i) the

search for possible disulfides does not have to be so fine-

grained that it lands precisely upon the S
—S
 midpoint,

requiring increased sampling, and (ii) there will likely be

multiple trace points in a neighborhood that registers a posi-

tive score, lending confirming evidence to the presence of a

disulfide.

Another observation that can be made from running the

discriminant method on back-transformed maps is that trace

points near the termini of side chains occasionally also have

positive scores, though they have nothing to do with disulfide

bridges. The cause of this phenomenon is unclear, but it is of

little consequence if the linearized trace is used, which strips

off the branches into side chains. When the trace for 1FDI (the

non-disulfide-containing protein used as the source of nega-

tive examples) is linearized, around 1/3 of the trace points are

removed, leaving 4493. Among these, 4490/4493 have negative

d scores, showing that many of the false positives were asso-

ciated with side chains and are easily filtered out by this

method; only three points (<0.1%) remain as false positives in

the entire map.

To evaluate the accuracy of the linear discriminant on

experimental (i.e. non-synthetic) maps, the method was

applied to five real electron density maps containing one or

more disulfide bridges (Table 1): �2u-globulin (Chaudhuri et

al., 1999), penicillopepsin (James & Sielecki, 1983), granulo-

cyte macrophage colony-stimulating factor (Rozwarski et al.,

1996), RNAse S (Sevcik et al., 1993), and tryparedoxin

(Alphey et al., 1999). The maps were phased and density-

modified using CNS (Brünger et al., 1998). The original reso-

lutions are shown in Table 1, though all structure factors were

truncated to generate 2.8 Å maps.

The linear discriminant was able to pick out all but one of

the disulfide bridges in these five maps (see Table 2). Some

false positives (regions with positive scores but not near

disulfide bridges) were observed, though usually with lower

discriminant scores, and hence lower ranking; the false posi-

tives tended to lie along the backbone, with no particular

pattern. Peaks are counted as pseudo-atoms from the linear-

ized trace that have positive discriminant scores, d > 0.

However, they are clustered, so local regions with several

nearby atoms with positive scores are only counted once (for

example, the group of three pseudo-atoms in Fig. 3 would be

considered as a single peak). Furthermore, it is important to

note that: (i) atoms within 6 Å of the border of the map were

disregarded, since the features for complete spheres of density

could not be computed for them, and (ii) only peaks falling on

a single copy of the molecule (or tetramer in the case of �2u-

globulin) were counted; peaks falling on symmetry-related

fragments appearing in the map were disregarded. ‘Ranks’

gives the ranking of the peaks corresponding to the true

disulfides, among the false positive peaks.

�2u-Globulin had four peaks, corresponding to one disulfide

in each monomer of the tetramer. No false positives (coordi-
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Figure 3
Recognition of a disulfide bridge between Cys40 and Cys43 in
tryparedoxin (Alphey et al., 1999), in a loop connecting an �-helix and
a �-strand. The trace of a 2.8 Å map generated from experimental phases
is shown by small black spheres, representing pseudo-atoms spaced at
�0.5 Å. Most of the side-chain branches have been trimmed off by the
trace-linearization routine, except for those of the two cysteines, of which
the connectivity through density is retained in the trace. The red lines
show the C� backbone trace of the true structure. The linear discriminant
was calculated at each of the trace coordinates, and a larger green sphere
is placed over those pseudo-atoms that are predicted to be near a
disulfide (d � 0). The only such trace atoms with positive scores are the
three indicated by the arrow, which are associated with the true disulfide
bridge. For reference, the backbone and side-chain atoms of the cysteine
residues in the true structure are shown in dark blue. The figure is shown
in ‘cross-eyed stereo’. All figures in this paper were created using Spock
(Jon Christopher, 1998).
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nates with d > 0 at non-disulfides) were observed. For peni-

cillopepsin, four false positives were observed, but the true

disulfide was recognized as the highest-ranked peak. Granu-

locyte macrophage CSF was the only map in which a true

disulfide was missed, which was due to a lack of trace points

across the bridge caused by a break in the density at the

default contour threshold used. But its other disulfide was

recognized as the highest ranked peak, as was the disulfide in

RNAse S. Finally, there were three peaks on the monomer for

tryparedoxin, the middle-ranked of which corresponded to the

true disulfide bridge.

5. Conclusion

Disulfide bridges can be automatically recognized in electron

density maps via pattern recognition. The method presented

primarily relies on two computational techniques: feature

extraction and linear discriminant analysis. The extracted

features capture various aspects of the pattern of density in a

region in the form of numeric values that are rotation-invar-

iant (independent of orientation). The linear discriminant

makes evaluation of these feature values as efficient as

computing a simple linear combination, where the coefficients

are optimized for discrimination between disulfides and non-

disulfides in the training set. Though the experiments were

carried out at 2.8 Å, the coefficients could easily be re-opti-

mized on maps at other resolutions. It is important, however,

that the resolution of maps being searched matches that of the

training set, to maximize recognition of the patterns. Thus

higher-resolution structure factors might have to be truncated,

for example.

Automated recognition of disulfide bridges in uninterpreted

electron density maps could provide a number of benefits to

both protein crystallographers, as well as model-building

programs. A protein crystallographer would benefit from

knowing the locations of disulfide bridges, which helps in

sequence identification by localizing fragments to regions

containing cysteine in the sequence. In addition, automated

model-building programs could exploit this information to

help resolve ambiguities and avoid mistakes in backbone

tracing. We are exploring ways of incorporating this disulfide-

recognition technique into CAPRA, the backbone-tracing

routine in TEXTAL, in order to make better decisions about

the connectivity of C� chains (Ioerger & Sacchettini, 2002).

This work was supported in part by an NIH grant GM-

63210. The author wishes to thank Dr Paul Adams (Lawrence

Berkeley National Laboratory), who generated the electron

density maps for the five experimentally determined struc-

tures used in the analysis.
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Table 1
Real (experimental) maps used in this study.

The map for �2u-globulin was made to cover a tetramer. The other maps were
made around monomers.

Protein
Resolution
(Å)

No. of
residues

No. of
molecules
in map

No. of
disulfides

�2u-Globulin 2.5 158 4 4†
Penicillopepsin 2.8 323 1 1
Granulocyte macr. 2.35 123 1 2
RNAse S 2.5 97 1 1
Tryparedoxin 2.0 145 1 1

† One per monomer of the tetramer.

Table 2
Results of the linear discriminant.

‘Peaks’ gives the number of clusters of pseudo-atoms with discriminant score >
0. ‘Maximum score’ is the score of the top peak. ‘True positive’ gives the
number of peaks located at true disulfide bridges in the structure. ‘False
positive’ gives the number of peaks located in other parts of the structure.
‘Ranks’ gives the ranks of the true positives among all the peaks with positive
scores.

Protein Peaks
Maximum
score

True
positive

False
positive Ranks

�2u-Globulin 4 2.91 4/4 0 1,2,3,4
Penicillopepsin 5 4.99 1/1 4 1
Granulocyte macr. 4 8.68 1/2 3 1
RNAse S 3 2.26 1/1 2 1
Tryparedoxin 3 10.51 1/1 2 2
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