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Automated methods for protein model building in X-ray

crystallography typically use a two-phased approach that

involves first modeling the protein backbone followed by

building in the side chains. The latter phase requires the

identification of the amino-acid side-chain type as well as

fitting of the side-chain model into the observed electron

density. While mistakes in identification of individual side

chains are common for a number of reasons, sequence

alignment can sometimes be used to correct errors by mapping

fragments into the true (expected) amino-acid sequence and

exploiting contiguity constraints among neighbors. However,

side chains cannot always be confidently aligned; this depends

on having sufficient accuracy in the initial calls. The

recognition of amino-acid side-chains based on the

surrounding pattern of electron density, whether by features,

density correlation or free atoms, can be sensitive to

inaccuracies in the coordinates of the predicted backbone

C� atoms to which they are anchored. By incorporating a

Nelder–Mead Simplex search into the side-chain identification

and model-building routines of TEXTAL, it is demonstrated

that this form of residue-by-residue rigid-body real-space

refinement (in which the C� itself is allowed to shift) can

improve the initial accuracy of side-chain selection by over

25% on average (from 25% average identity to 32% on a test

set of five representative proteins, without corrections by

sequence alignment). This improvement in amino-acid selec-

tion accuracy in TEXTAL is often sufficient to bring the

pairwise amino-acid identity of chains in the model out of the

so-called ‘twilight zone’ for sequence-alignment methods.

When coupled with sequence alignment, use of the Simplex

search yielded improvements in side-chain accuracy on

average by over 13 percentage points (from 64 to 77%) and

up to 38 percentage points (from 40 to 78%) in one case

compared with using sequence alignment alone.
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1. Introduction

One of the significant challenges in automated construction of

protein models from electron-density maps is accurate iden-

tification of amino-acid side chains. There are a number of

reasons why individual amino-acid side chains may be difficult

to recognize in electron-density maps, ranging from noise

caused by phase error to diffusiveness arising from high B

factors to structural similarities among the amino acids that

cause ambiguity. In some cases, sequence alignment to the true

(or expected) amino-acid sequence can be used to determine

the identity of a given fragment (or chain) and thus correct the

mistakes among its residues (Terwilliger, 2003; Cohen et al.,

2004). However, this cannot always be performed reliably and
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is limited by the raw accuracy of the initial side-chain calls.

Typically, at least 25–30% of amino acids in a chain need to be

correct in order to accurately determine its location in the true

sequence. The potential for recognition errors is exacerbated

by inaccuracies in the estimated coordinates of putative C�

atoms. In this paper, we discuss an application of the Simplex

search algorithm to enhance the accuracy of amino-acid side-

chain identification (prior to sequence alignment) by a local

rigid-body real-space refinement of candidate side chains

(including translation of the C�) in the process of selecting the

best match and this can ultimately improve the amino-acid

identity of models built using sequence alignment.

Most automated model-building methods are comprised of

two principal stages. The first stage predicts C� coordinates

and constructs a preliminary backbone, typically using a

skeletonization or tracing algorithm (Jones et al., 1991; Ioerger

& Sacchettini, 2002; Oldfield, 2003). The second stage deter-

mines the amino-acid type for each predicted C� and builds it

into the nearby density. For example, MAID uses a template-

matching approach, picking the best rotamer from a library

(Levitt, 2001). Once the best rotamer is identified, it is then

optimized by torsion-angle Powell minimization where the

main chain and hence the C� coordinates are fixed. ARP/

wARP ‘docks’ an amino-acid sequence onto its initial back-

bone by examining the connectivity vectors of free atoms in

the vicinity of the estimated C� atom (Cohen et al., 2004).

After the amino-acid type assignments are made, the side

chains are modeled using a rotamer library followed by

torsion-angle real-space refinement using the Simplex algo-

rithm (although the only backbone parameter manipulated is

’). RESOLVE takes a different approach involving convolu-

tion of average side-chain densities for the 20 amino-acid

types and uses a Bayesian approach to dock the amino-acid

sequence onto the pre-built backbone (Terwilliger, 2003).

Once the amino-acid types have been identified, the best

rotamer is built into the model based on the previously built

and fixed C� coordinates. Finally, TEXTAL uses a library of

solved prototypic density regions extracted from the PDB

(Ioerger & Sacchettini, 2003). This method, which is the

middle stage of TEXTAL, is referred to as ‘LOOKUP’. Firstly,

the library is filtered based on rotation-invariant ‘features’

calculated from the density in the neighborhood of the

predicted C� atoms. Each of the remaining high-probability

matches is then examined in more detail by superimposing the

density region from the library onto the observed density

around the predicted C� and evaluating the local density

correlation. The side-chain model for the best fitting region is

then extracted from the library and used to build the final

model.

Each of these methods for identifying and modeling side

chains is approximate and depends to a varying extent upon

the initial determination of the backbone C� positions. If the

predicted C� is offset sufficiently from its true position, then

the surrounding density could look significantly different,

affecting the identification of its associated residue. For

example, if the predicted C� is shifted into the side-chain

density, then it may appear to be a shorter side chain than it

actually is. If the C� is shifted laterally along the backbone

(away from a branch point), then no side chain might fit the

density well. This sensitivity of amino-acid type identification

to the initially constructed backbone can be addressed by

using the Nelder–Mead Simplex algorithm to perform a local

optimization of the library region to the density as part of the

side-chain identification process.

The Nelder–Mead Simplex algorithm is a classic search

algorithm for the optimization of multidimensional functions

(Nelder & Mead, 1964). Features of the Simplex algorithm

include a large radius of convergence, an ability to adapt to

and avoid local maxima/minima and the lack of a need to

compute derivatives. Applications of Simplex search include

determining optimal weighting of energy terms in sequence

threading (Russell & Torda, 2002; Torda et al., 2004), the

fitting of simple approximations to complex potential energy

surfaces (Marun et al., 2004), the superposition of small

ligands for 3D-QSAR studies (Melani et al., 2003), as well as in

docking studies (Exner et al., 2002; Hu & Shelver, 2003) and in

semi-interactive rigid-body refinement in Coot (Emsley &

Cowtan, 2004). It has also been used previously in automated

model building for optimizing the fit of modeled side chains to

their corresponding density, such as in the torsion-angle real-

space side-chain refinement in ARP/wARP (Cohen et al.,

2004). However, the use of the Simplex method (or any other

form of real-space refinement applied to individual residues)

typically occurs after the amino-acid type of the side chain has

been inferred.

Here, we introduce a novel application of the Simplex

algorithm to improve the correct identification of side-chain

types by using it to optimize the fit in matching electron-

density patterns with the density to be modeled. By allowing

the candidate density regions to rotate and translate, we are

able to find better matches from a library of solved regions

that are less dependent upon the accuracy of their initial

superposition, which is determined by the initial backbone

construction. In the TEXTAL automated model-building

system, this optimization not only improves the raw accuracy

of amino-acid identification, but also leads to increased amino-

acid identity of resultant models when sequence alignment is

applied.

2. Methods

Amino-acid identification and modeling in TEXTAL begins

with retrieving the spherical region (5 Å radius) of electron

density from the TEXTAL database (�50 000 regions

extracted from maps of previously solved models) that best

matches the density surrounding each predicted C� in a given

map. The initial retrieval of matching regions is based on

comparison of rotation-invariant features that characterize

local electron-density patterns (Ioerger & Sacchettini, 2003).

A limited number of candidate matches (K = 400 is typically

used as a filter) are selected and re-ranked based on local

density correlation in order to identify the best match. The

density correlation is calculated over a cylindrical region 5 Å

long by 2.5 Å in radius that covers the known side chain (from
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the database). The two regions are aligned by rotating them so

that ‘spokes’ of density emanating from the centers of each

region (representing the direction of the side chain and the C-

and N-terminal directions of the backbone) are optimally

superposed (Ioerger & Sacchettini, 2003). The local coordi-

nates for the side-chain atoms from the best-matching region

in the TEXTAL database are retrieved and rotated into

position using the same rotation matrix as the superposition

for the correlation calculation.

2.1. Simplex optimization in TEXTAL

To enhance the selection of this initial local model, we

incorporated a real-space optimization strategy that adjusts

the superposition (including both rotation and translation)

between two regions to improve the determination of the

quality of fit (correlation). We chose to use the Nelder–Mead

Simplex algorithm (Nelder & Mead, 1964) as the optimizer,

which does not require Fourier synthesis (i.e. calculation of

Fourier coefficients, as is typically performed in reciprocal-

space refinement procedures; Murshudov et al., 1997).

The Simplex optimizer was incorporated into TEXTAL’s

LOOKUP routine as shown in Fig. 1. The target function is the

TEXTAL density-correlation function and the dependent

variables are the six degrees of freedom of the known region:

three Euler angles and three Cartesian coordinates for the

translation. The initial simplex was constructed as described in

Mistree & Shoup (1987), with 7 (i.e. N + 1) vertices and

characteristic lengths of 10� for the Euler angles and 0.5 Å for

the translation. The Simplex algorithm cannot itself pick a side

chain; it merely optimizes the fit between the probe region

(and the side-chain contained therein) against the library

region that LOOKUP was already considering. This is then

used to score the database regions using density correlation

and make better selections than when only a coarse orienta-

tion optimization is used. It is important to note that the

optimization of each unknown region is completely indepen-

dent of the optimization of every other unknown region, since

there are neither stereochemical nor through-space restraints

placed on the minimizer.

If the Simplex method is unable to locate a region with

better density correlation than that found by the non-Simplex

method, then the Simplex result is rejected in favor of the

original LOOKUP result. Since the location of the simplex set

is unconstrained in the six-dimensional parameter space, it is

possible that the probe region could drift sufficiently far from

the original anchor point that it is actually fitting another

residue nearby. It is also possible for the Simplex routine to

push the region far enough away that the best fit is now to the

main-chain density and not the unknown side chain. To

prevent these errors from occurring, the Simplex result is also

rejected if the C� shift is greater than 2.0 Å.

It is important to correctly determine when an optimum has

been obtained with the Simplex algorithm or whether no

optimum can be found, which taken together constitute the

stopping criterion. The former is addressed by checking for

convergence of the algorithm, i.e. when improvements in the

density correlation become smaller than a pre-determined

tolerance. A default tolerance of 0.001 was selected for our

experiments. To decide when no optimum can be found, a

cutoff of 5000 density-correlation evaluations was chosen.

Such a large number will permit outlier cases to still be opti-

mized while not unduly extending the execution time of the

program. In practice, the average number of evaluations

observed during a typical LOOKUP run is around 200 per C�.

2.2. Evaluating model-building performance

Two primary metrics were used to gauge TEXTAL’s

performance with Simplex optimization: CAPRA’s perfor-

mance was evaluated by the r.m.s.d. (root-mean-square

deviation) of C� placement compared with the refined struc-

ture, while LOOKUP was evaluated by the percentage of

correct amino acids assigned based on both identity and

structural similarity. In both cases, the TEXTAL model was

compared against a model solved and refined by a crystallo-

grapher, i.e. a ‘hand-crafted’ model. A structural alignment of

the two models was made by finding the closest C� in the

TEXTAL model to each true C�. This alignment was used to

calculate the C� r.m.s.d. as well as to determine what amino-

acid assignment should have been made.
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Figure 1
The workflow for LOOKUP is shown, along with where the Simplex real-
space refinement stage was introduced. The feature filter first selects K
regions from the TEXTAL database, which are then extracted, super-
imposed and the density correlation computed. Finally, the top-scoring
regions are considered and the best match to the unknown density region
is picked.
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Since some residues simply look too similar to be distin-

guished from each other based on their electron density (e.g.

Val and Thr), a looser notion of identity was also used based

on the structural similarity of side chains. Each amino acid is

assigned a ‘group code’ based on ten sets of residues with

similar shapes (four groups are unique and only contain one

member): {A, G}, {D, L, N}, {Q, E, M}, {F, Y, H}, {K, R}, {S, T, V},

{C}, {I}, {P}, {W}. These are used to compute a ‘structural

similarity’ score in the tables, which is sometimes more

reflective of the side-chain modeling accuracy than strict

amino-acid identity.

3. Results and discussion

A test suite of experimental electron-density maps for five

different proteins in the Protein Data Bank was used to

compare the performance of TEXTAL with and without

Simplex. The test proteins, each originally solved by multi-

wavelength anomalous diffraction (MAD), were CzrA (zinc

response protein; Eicken et al., 2003), ICL (isocitrate lyase;

Sharma et al., 2000), MVK (mevalonate kinase; Yang et al.,

2002), If5a (translation initiation factor 5a; Peat et al., 1998)

and PcaA (mycolic acid cyclopropane synthase; Huang et al.,

2002). The five electron-density maps, generated from MAD

phases after solvent flattening but prior to any model-based

refinement, spanned a range of resolutions (2.1–3.0 Å; see

Table 1) and quality, from relatively high quality (clear

backbone and side-chain density) to low quality (i.e. high

phase error). In each case, the experimental map was re-

calculated at 2.8 Å prior to submission to TEXTAL, since

TEXTAL was trained for pattern recognition in 2.8 Å maps.

The five proteins and their TEXTAL model-building results

are summarized in Table 1.

3.1. Effects of Ca accuracy on amino-acid identification

Before investigating the improvements that can be achieved

with the Simplex algorithm, we start by characterizing the

baseline accuracy of TEXTAL using the default density-

correlation method in LOOKUP to recognize and identify

side chains. While the C� backbones built by CAPRA are very

good, with C� placements often within 1 Å r.m.s.d. of correct

positions, the initial amino-acid identity from LOOKUP is

often low, in the neighborhood of 30% for high-quality maps

(e.g. with low phase error), or lower for worse ones. This is not

entirely unexpected since some residues are similar structu-

rally, such as glutamate and glutamine, and are impossible to

distinguish at these resolutions. In addition to structural

degeneracy, side-chain recognition can be complicated by

noise arising from phase error, high B factors, improper masks

for density modification etc., which can further decrease the

ability to discriminate side-chain identities.
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Table 1
Data sets used in this study.

The resolution indicated is for the experimental structure factors used, which
may differ from the final resolution reported for the refined structures. Phase
error (at native resolution) in comparison to phases calculated from the final
refined structure is reported. Map correlation is between experimental
electron-density maps and �A-weighted 2Fo � Fc maps calculated at 2.8 Å.

Protein
Resolution
(Å)

Phase
error (�)

Map
correlation

CzrA 2.3 18.1 0.95
If5a 2.1 36.8 0.91
MVK 2.4 42.8 0.84
ICL 3.0 44.1 0.81
PcaA 2.8 54.2 0.73

Figure 2
The effect of perturbations in the C� prediction on the LOOKUP results
for CzrA is shown here by displacing the ideal C� coordinates from the
hand-refined structure by vectors of increasing magnitude and random
directions. The results from LOOKUP where only the spoke correlation
method was used is shown in blue. The Simplex LOOKUP result is shown
in red.

Table 2
Comparison of TEXTAL’s model-building accuracy over the test suite of
five proteins.

The feature-filter cutoff was K = 400. Identity is the strict amino-acid identity
both before and after sequence-alignment correction. The ‘similarity’ of side
chains is based on the following structural equivalences: {A, G}, {D, L, N}, {Q,
E, M}, {F, Y, H}, {K, R}, {S, T, V}, {C}, {I}, {P}, {W}.

Average CzrA ICL If5a MVK PcaA

K = 400, non-Simplex
Mean residue CC 0.785 0.820 0.771 0.816 0.777 0.740
C� r.m.s.d. 0.876 0.753 1.030 0.802 0.877 0.916
Identity (without alignment) 25.5 40.0 23.5 30.2 18.1 15.6
Similarity (without alignment) 45.4 65.6 39.9 51.2 39.4 31.1
Identity (with alignment) 64.1 94.4 55.3 92.2 40.1 38.7
Similarity (with alignment) 69.0 96.6 59.0 93.0 49.5 46.7
Run time (s per C�) 0.70 0.77 0.68 0.71 0.71 0.72

Perfect C�s, non-Simplex
Mean residue CC 0.887 0.936 0.851 0.919 0.897 0.833
Identity (without alignment) 41.7 65.3 28.5 51.5 38.2 25.2
Similarity (without alignment) 60.4 81.1 48.3 73.5 53.9 45.0

K = 400, Simplex
Mean residue CC 0.918 0.937 0.896 0.941 0.924 0.892
C� r.m.s.d. 0.791 0.577 0.972 0.601 0.741 1.063
Identity (without alignment) 32.5 47.8 26.0 38.8 30.8 19.3
Similarity (without alignment) 52.8 73.3 43.4 63.6 49.6 34.0
Identity (with alignment) 77.5 93.3 76.4 93.0 77.6 47.4
Similarity (with alignment) 80.5 94.4 79.9 95.3 80.9 52.1
Run-time (s per C�) 1.90 2.00 1.86 1.97 1.90 1.94
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Through a sequence-alignment routine in TEXTAL, it is

often possible to correct the amino-acid prediction from

LOOKUP and bring the overall amino-acid identity of the

TEXTAL model to above 80%. Sequence alignment in

TEXTAL is implemented using a traditional dynamic

programming alignment algorithm (Needleman & Wunsch,

1970; Gotoh, 1982) for global gapped alignments (without

end-gap penalties) to dock fragments from the map into the

true sequence, even in the presence of substitutions (mis-

identities) and insertion/deletions (small gaps arising from

extraneous or missing C� atoms in the predicted backbone

chains); LOOKUP can then be re-invoked to replace incorrect

side chains with corrected identities (Ioerger & Sacchettini,

2003).

We hypothesize that imprecision in the initial C� placement

might be contributing to the inaccuracy in LOOKUP’s amino-

acid assignments. This is in fact easy to demonstrate by using

the C� coordinates from the final refined structures as the

predicted C� atoms for LOOKUP. These coordinates can then

be randomly perturbed and the effect on LOOKUP results

examined, as shown in Fig. 2 for CzrA. Using the ‘perfect’

hand-crafted C� coordinates, LOOKUP is able to correctly

assign approximately 65% of the residues in CzrA without the

help of sequence alignment. As the artificially introduced

error in C� placement increases, the accuracy of LOOKUP

drops rapidly. In fact, this curve is a good predictor of

expected LOOKUP performance for other maps. For

example, Table 2 shows MVK has a C� r.m.s.d. of 0.877 Å, for

which Fig. 1 predicts an average expected identity of around

18–20%. The raw identity (without Simplex or sequence

alignment) turns out to be 18.1% (see Table 2). This shows

that the accuracy of predicted C� coordinates has a direct

influence on the accuracy of side-chain identification.

If the bulk of the error in LOOKUP can be attributed to

imprecision in the C� placement, then how well can LOOKUP

perform on average if this is factored out? Table 2 also shows

the results of running LOOKUP on the test suite where the

CAPRA C�s have been replaced with those from the true

structure, i.e. the ‘perfect C�s’. On average, the initial iden-

tities LOOKUP assigned were 41.7% correct, compared with

25.5% when using the C� predicted by CAPRA, and the mean

side-chain correlation coefficient improved by 0.10 (from 0.79

to 0.89). These results can be taken as representing an upper

bound on the best performance that can be expected from

LOOKUP (without sequence alignment).

3.2. LOOKUP with Simplex

The addition of the Simplex optimizer to LOOKUP gives it

a fully fledged search capability when comparing regions.

LOOKUP is now free to rotate and translate the probe

regions to find the best correlation, thereby mitigating the

effect of poor initial C� placement on LOOKUP’s side-chain

calls. This is demonstrated quite clearly in Fig. 2, which shows

the effect Simplex search has on LOOKUP’s dependence on

C� placement accuracy. The Simplex-augmented version of

LOOKUP is 15–20% more accurate over most of the range (of

artificially introduced C� errors) for CzrA. It is not surprising

that the Simplex curve dips slightly from 0–0.3 Å r.m.s.d. (see

Fig. 2) since the initial Simplex used to seed the search is

constructed from small perturbations to the orientation and

position of the probe region.

The performance of LOOKUP using the Simplex search is

summarized in the bottom half of Table 2. This use of the

Simplex search increases the initial accuracy of amino-acid

identities seven percentage points, from 25.5 to 32.5%

(without sequence alignment). More importantly, it boosts the

average accuracy with sequence alignment to 77.5%, which is

13% better than can be achieved with sequence alignment

alone (64.1%). In individual cases, the improvement can be

even more dramatic. For example, use of Simplex increases the

percentage identity for mevalonate kinase (MVK) almost

38%, from 40.1 to 77.6% (both estimates with sequence

alignment applied). This can be interpreted intuitively as

Simplex pulling the raw sequence identity out of the ‘twilight

zone’, at which point sequence alignment becomes more
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Figure 3
This figure shows representative regions comparing the original TEXTAL model (in magenta) against the Simplexed LOOKUP version (in green) and
the ‘true’ or hand-crafted model (in blue). (a) shows His96 in CzrA, which was originally modeled incorrectly as a Glu (without Simplex), but was
correctly recognized as a His when Simplex shifted the C� closer to its true location. (b) and (c) show a small fragment built by TEXTAL (residues 55–
57) without Simplex (b, magenta) and with Simplex (c, green) compared with the refined coordinates (blue).
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effective. Although the Simplex optimization during

LOOKUP moved the C� atoms about 0.65 Å on average from

where CAPRA originally predicted them, this made only a

minor improvement in the C� r.m.s.d. compared with the C�

atoms of the refined structure (by approximately 0.1 Å, from

0.876 Å in the non-Simplex case to 0.791 Å with Simplex).

Note that the improvements made by the Simplex search do

not come at a very dramatic computational cost; the new

method takes �2.0 s on average to model each residue,

compared with around 0.7 s per residue for the non-Simplex

mode.

The improved C� placement, as well as fit to density, can be

observed graphically by examining the output of LOOKUP

using the Simplex algorithm (but without identity corrections

arising from sequence alignment). Fig. 3 shows two repre-

sentative regions from CzrA, comparing the output of Simplex

LOOKUP, shown in green, with the original TEXTAL model

(without Simplex), shown in magenta, and the true (hand-

crafted) model, shown in blue. Fig. 3(a) shows a close-up view

illustrating the effect of improved C� placement on His96. The

initial C� coordinate predicted by CAPRA was offset by

0.99 Å and this caused the residue to be incorrectly recognized

by LOOKUP as a Glu (magenta). When Simplex optimization

was turned on, the C� shifted 0.5 Å closer to its true location

(0.53 Å error) and this permitted the side-chain density to be

correctly recognized and modeled as a His (green). Figs. 3(b)

and 3(c) show a comparison of residues 55–57 with and

without Simplex optimization. Without Simplex (Fig. 3b),

there are significant errors in the C� coordinates (0.60–

1.12 Å), causing several side chains to be modeled incorrectly.

For example, Val56 is modeled as a larger residue, Ile. With

Simplex optimization (Fig. 3c), the C� coordinates have

become considerably more accurate (0.05–0.40 Å), along with

the identities and fit of the side chains. On average, Simplex

optimization improved the accuracy of the C� coordinates

from 0.80 to 0.27 Å over these three residues. The resulting

residues are either identical to (Ser57) or isosteric (Leu for

Asn55; Thr for Val56) with those in the true structure.

4. Conclusion

In this paper, we have described a novel application of the

Nelder–Mead Simplex algorithm to improving the identifica-

tion and real-space fitting of amino acids based on local

patterns in electron density. In contrast to traditional rigid-

body real-space refinement, which is typically applied to

enhance the fit of side chains to density after their identity has

been inferred, our approach uses Simplex optimization during

the identification process itself to enhance the evaluation of

quality of fit and hence the selection of the best local match.

The primary advantage arises from allowing translation as well

as rotation during the matching of regions (superposition to

maximize local density correlation), which can compensate for

the effect of errors in predicted C� coordinates on the

recognition of side-chain identities. This was shown to improve

both the accuracy of side-chain recognition, as well as esti-

mates of predicted C� coordinates, in the TEXTAL automated

protein model-building system. The increase in raw amino-

acid identity was enough to boost the final sequence identity

(after sequence alignment post-processing) from an average of

64% to nearly 78% across the test suite of experimental maps.

Yet the Simplex search is not prohibitively inefficient,

increasing the run-time by only a factor of approximately

threefold over the original LOOKUP implementation.

This work was supported in part by grant P01-63210 from

the National Institutes of Health, along with the Welch

Foundation (JCS).
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