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Abstract

Background: Knowledge of which genes are essential to the survival of an organism is critical to understanding the
function of genes, and for the identification of potential drug targets for antimicrobial treatment. Previous statistical
methods for assessing essentiality based on sequencing of tranposon libraries have usually limited their assessment to
strict ‘essential’ or ‘non-essential’ categories. However, this binary view of essentiality does not accurately represent
the more nuanced ways the growth of an organism might be affected by the disruption of its genes. In addition, these
methods often limit their analysis to open-reading frames. We propose a novel method for analyzing sequence data
from transposon mutant libraries using a Hidden Markov Model (HMM), along with formulas to adapt the parameters
of the model to different datasets for robustness. This approach allows for the clustering of insertion sites into distinct
regions of essentiality across the entire genome in a statistically rigorous manner, while also allowing for the detection
of growth-defect and growth-advantage regions.

Results: We evaluate the performance of a 4-state HMM on a sequence dataset ofM. tuberculosis transposon
mutants. We also test the HMM on several synthetic datasets representing different levels of transposon insertion
density and sequence coverage. We show that the HMM produces results that are highly correlated with previous
assignments of essentiality for this organism. We also show that it detects growth-defect and growth-advantage
genes previously shown to impair or enhance growth when disrupted.

Conclusions: A 4-state HMM provides an improved way of analyzing Tn-seq data and assessing different levels of
essentiality that enables not only the characterization of essential and non-essential genes, but also genes whose
disruption leads to impairment (or enhancement) of growth.
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Background
Transposon mutagenesis is an experimental method fre-
quently used for surveying bacterial genomes for essential
regions, including genes, as well as individual protein
domains, regulatory elements, and non-coding RNAs that
are required for survival. For example, the Himar1 trans-
poson inserts randomly into TA nucleotides [1]. Those
locations that lack a transposon insertion suggest either
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that the location is essential (as they could not tolerate
disruption) or that it was not represented in the library
of transposon mutants (i.e. the location is non-essential
but transposons missed this location during construction
of the library, resulting in incomplete saturation). Typi-
cally, around 15% of the genes in the genome of prokary-
otic organisms are essential [2]. Knowledge of which
genes are essential can be very useful for drug discovery
against pathogens (e.g. to identify new targets for antibi-
otics). While the original method used hybridization on
DNA microarrays [3,4], deep sequencing has made anal-
ysis of transposon insertion libraries much more efficient
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(sometimes called Tn-Seq or TRACS) [5,6]. Short reads
are obtained from the genome on either side of each trans-
poson insertion, using amplification with a transposon-
specific primer, and then mapped to the genome of the
organism, revealing which locations withstood transpo-
son insertions (see Figure 1).
The data from a Tn-Seq experiment can be analyzed in

several ways. First, reads can be used to ascertain the pres-
ence or absence of insertions in a gene. The probability
that a gene lacking insertions is essential depends on the
diversity of the transposon library (proportion of TA sites
with insertions), and can be quantified using the Binomial
[7], negative-Binomial distribution [8], or Extreme Value
distribution [9]. Alternatively, the number of reads at each
site (“read count”) can be analyzed instead of the mere
presence or absence of insertions. It can be argued that
the read count carries additional information because it
reflects the abundance of certain clones in the library,
and hence the degree to which a region of the genome
is essential. Zhang et al. described a non-parametric test
that quantifies the significance of the sum of read counts
within a sliding window (400–600 bp) along the genome
to detect essential regions [10].
Both analysis approaches have challenges, depending

on the quality of the transposon library and sequencing
dataset. Methods that only look at the presence or absence
of insertions can be susceptible to spurious reads, such
as isolated reads that map to an essential region of the
genome only because they have base-call errors. However,
it is difficult to set a threshold for a minimum number
of reads, since other sites with a single read might be
legitimate. On the other hand, methods based on read
counts are susceptible to several sources of variability,
including spikes in the data, where there is a massive over-
representation of reads at an isolated site. The distribution
of read counts is usually observed to follow a geomet-
ric distribution, but in some datasets, a few sites might
have orders-of-magnitude more reads, possibly due to an

artifact such as a PCR amplification bias. This could highly
influence statistics based on read counts.
It should also be noted that, even in essential genes,

transposon insertions are often observed to be tolerated
at the extreme N- and C-terminus of the open-reading
frame (ORF). Previously, ad hoc methods were used,
such as excluding insertions in the N- and C-terminal
5–20% of the ORF [5]. However, both the sliding win-
dow approach [10] and the Extreme Value distribution [9]
based on the length of the longest sub-sequence of TA
sites without insertions are designed to be robust in spite
of insertions at the termini of essential genes, and have
been used to identify individual essential domains within
genes [9,10].
In this paper, we describe a novel method for analyz-

ing Tn-Seq data using Hidden Markov Models (HMMs).
HMMs are useful for analyzing sequential datasets, in
which a sequence of observed values is explained by
an underlying state sequence (i.e. “essentiality” of each
site, which is not directly observed). For example, the
genome of an organism can be viewed as an alternat-
ing sequence of essential and non-essential regions. We
show how an HMM can be designed to incorporate infor-
mation from read counts at individual TA sites to infer
the probability distribution over states, and then use the
Viterbi algorithm to infer the most likely state sequence
(labeling of each site as essential or non-essential). The
sequential-dependence of the model (conditional proba-
bility of a state conditioned on the previous neighboring
site) helps disambiguate the interpretation of each site,
thereby coupling neighboring sites together. The resulting
state transition model affords a ‘smoothing’ of the read-
count data, where, for example, TA sites with no insertions
in non-essential regions (e.g. because they are absent from
the library) are tolerated because neighboring sites have
insertions. However, if a consecutive sequence of TA sites
with no insertions is long enough, the most probable
state sequence, as determined by the Viterbi algorithm,

Figure 1 ClpX read counts. Example read counts for a 4kb region in theM. tuberculosis genome obtained from deep-sequencing of transposon
insertion libraries. ClpX, the ATP-dependent specificity component of the CLP protease, contains a single insertion in the C-terminus. The 19
remaining TA sites are devoid of insertions, indicative of an essential gene. Figure created using IGV - distributed by the Broad Inst.
http://www.broadinstitute.org/igv/.
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switches locally to essential, providing a different labeling
of that region.
The incorporation of read-counts in this HMM requires

defining appropriate likelihood functions.We use the geo-
metric distribution to capture the conditional probability
of read-counts in non-essential regions, reflecting the fact
that sites with high read counts (far above average) are
observed with much lower frequency than those with
lower read counts. Furthermore, the transition probabil-
ities of the HMM must be carefully defined so that the
minimum length of essential regions matches our expec-
tations. A major contribution of this paper is to show how
to calibrate these parameters so that the performance of
the HMM will be reasonable and robust across a range of
datasets, including those with high or low insertion den-
sity (a function of the diversity of insertion library), and
those with high or low mean read counts (a function of
how much sequencing data is collected).
In addition, we extend the HMM with two extra states,

one representing regions with particularly “low” read
counts, and one representing regions with higher than
average read-counts (see Figure 2). Genes belonging to the
former class of genes have been characterized before in
M. tuberculosis and referred to as “growth-defect” genes
[3], as these are genes whose disruption leads to impaired
growth of the organism. We continue this convention
here, labeling those genes with depressed read-counts
as “growth-defect” (despite the fact that these genes
code for proteins whose normal function contribute to
growth) to be consistent with the prior literature. Growth-
defect regions are not completely devoid of insertions
(as essential regions would be), but have a lower num-
ber of insertions than non-essential regions (on average),

suggesting that these clones did not grow as well and had
lower abundance due to competition with other clones in
the library.
Similarly, the latter class of genes (i.e. those with higher

than average read-counts) are labeled “growth-advantage”
genes. These could represent genes that have a metabolic
cost (e.g. biosynthesis of a secreted toxin) and are not nec-
essary for growth in vitro. The addition of these two states
to our HMM allows it to distinguish regions in Tn-Seq
data with suppressed or unusually high read counts in a
statistically rigorous way.

Methods
The HMM in this application is defined in a straightfor-
ward way (see Rabiner for details [11]). We are given a
sequence of observations, c1..cn, which represent read
counts at each TA site throughout the genome. We
assume a generative model in which the read count
at each site is determined by the local state of each
site, which is hidden (i.e. not directly observable). Each
TA site is assumed to be in one of four states: qES
(essential), qGD (growth-defect), qNE (non-essential), qGA
(growth-advantage).
From a given sequence of observations (read counts), we

want to infer the most probable state sequence q1..qn that
could have generated it, based on the joint probability of
counts and states:

arg max
qi..qn

p(q1 . . . qn, c1 . . . cn) (1)

HMMs are based on the Markov property, i.e. that
observations and successor states only depend on the

Figure 2 Hidden Markov Model architecture. (A) Diagram of the fully connected HMM structure. From left to right, the states represent read
counts of increasing magnitude (essential, growth-defects, non-essential, and growth-advantage). (B) Diagram of the state transitions (from qi−2 to
qi+13) and their corresponding emissions (i.e. read counts). A transition is made from the non-essential state to the essential state at time i + 1, as
the essential state is most likely to explain the consecutive observations of no insertions (from qi+1 to qi+12).
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current state and are conditionally independent of previ-
ous history:

p(ci|q1, . . . , qi) = p(ci|qi) (2)

p(qi+1|q1, . . . , qn, c1, . . . , cn) = p(qi+1|qi, ci+1) (3)

Thus, because of this conditional independence, the
total joint probability can be written as:

p(q1, . . . , qn, c1, . . . , cn) = p(q1)
∏

p(qi+1|qi, ci)p(ci|qi)
(4)

The model we propose depends critically on specify-
ing an appropriate likelihood function for read counts. In
Tn-Seq experiments, the distribution of read counts can
be approximated through a geometric distribution, in that
sites with lower counts are more common, and sites with
high counts (far above average) are much more rare. An
example histogram in shown in Figure 3 (taken from an
M. tuberculosis H37Rv dataset [6]).
Thus we model the likelihood function (i.e. emission

probability) for qNE as geometric:

p(ci|qNE ; θ) ∼ (1 − θ)ciθ (5)

The function is parameterized by θ , which represents
the Bernoulli probability of insertion for the geometric
distribution. The maximum-likelihood estimate for this
parameter is θ = 1/c̄, where c̄ is the mean read count at
non empty TA sites.

Figure 3 Geometric fit of read count distribution. Histogram of
read-counts for a library ofM. tuberculosis transposon mutants (black,
solid vertical lines), fitted with a geometric distribution with
parameter θ = 1/c̄ (dashed line).

We also use geometric distributions as likelihood func-
tions for the other states. For qES, we set θ very near to 1
(e.g. 0.99), making sites with 0 counts highly probable, but
also allowing sites with 1–2 reads (which could be spuri-
ous reads due to base call errors). For qGD we set θ to be
θGD = 1/(0.01 × c̄ + 2) (where c̄ represents the mean),
reflecting the fact that the growth-defect state must rep-
resent approximately ∼ 100× lower read counts than qNE
but cannot be less than 1 (converges to 2, in the limit,
for very low coverage datasets). For the growth-advantage
state, qGA, we set θ using five times the mean read count
(i.e. θGA = 1

5c̄ ), to capture sites with significantly more
insertions (> 5×) locally than what is observed on average
in the genome. The net effect is that the overlapping den-
sities of the four likelihood functions produce four distinct
regions where each one dominates individually, as shown
in Figure 4.
Another critical aspect of our model is the definition

of the state transition probabilities, as these determine
the degree of smoothing of the HMM. Let the transition
matrix be defined as Tab = p(qi+1 = b|qi = a). The basic
assumption is that the probability of self-transition, Taa,
should be nearly 1 for all states, while Tab should be nearly
0 for a �= b (off-diagonal elements in the T matrix). This
assumption controls the rate at which the HMM transi-
tions from state to state, requiring a significant change
in read-counts to justify a transition and smoothing over
spurious reads. For simplicity, we use a fully symmetric
matrix, and we allow any state to transition to any other
state (i.e. we do not force sites to progress in a sequence,
such as qES → qGD → qNE). The magnitude of Taa deter-
mines the tendency of the model to stay in one state for a

Figure 4 Likelihoods. Log-log plot of geometric likelihood functions
for the essential, growth-defect, non-essential and growth-advantage
states.
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certain number of steps before being forced into another
state that better fits the data. This depends on several
factors, including: a) the expected minimum length of
essential regions (number of TA sites), and b) the rel-
ative magnitudes of the likelihood functions, which are
competing to explain the read counts.
To estimate the expected minimum length of essential

regions, we utilize the geometric distribution. The geo-
metric distribution describes the probability of observing
a run of successes in a row, which can be used tomodel the
distribution of run lengths. This depends on the insertion
probability in non-essential regions. Because the inser-
tion density of the library will include essential regions
with insertion probabilities which are not representative
of non-essential regions. To alleviate this bias, we estimate
the insertion probability, pins, empirically by discarding
regions with 10 or more TA sites in a row lacking inser-
tions, and calculating the insertion density in the remain-
ing areas. Once the insertion probability is estimated, the
minimum length of essential regions, r∗, is taken to be
the smallest run such that the geometric probability is less
than 0.01 (i.e. r∗ = argmin P(r|1 − pins) < 0.01). Typ-
ically r∗ is in the range of 5–10 TA sites, depending on
the dataset. The self-transition probability is then set as
follows:

Taa = 1 − (λNE(0))r∗

where λNE(0) represents the likelihood of observing a
read-count of zero in a non-essential region. The rationale
for this formula is that the cost of staying in a state such as
qNE through a region devoid of insertions, must balance
the penalty incurred for observing sites with 0 read counts
(λNE(0)) and the number of such TA sites in a row which
are likely to be observed in non-essential regions (r∗).
We will show empirically in the Results section that

this adaptive method for setting the transition probabili-
ties leads to an appropriate assignment of state labels for
a variety of types of datasets, and we will examine the
resulting length distribution of states produced.
Finally, given this definition of the HMM, we use the

Viterbi algorithm to calculate the most probable state
sequence for a given set of read counts [11]. Briefly, the
Viterbi algorithm is a dynamic programming algorithm
in which the probability of each state at step i is calcu-
lated based on the state-probability distribution from the
previous step:

p(qi = a) = max p(qi−1) × p(qi|qi−1) × p(ci|qi) (6)

After computing this incrementally for i = 1..N , a back-
trace is made from the most probable terminal state q∗

n to
extract the sequence of states based on which states were
used for updates at each step. Because the Viterbi algo-
rithm requires the multiplication of small probabilities,
and the state sequence for analyzing transposon insertions

is large, an HMMmay incur underflow problems. To over-
come this issue, the probabilities are normalized at each
iteration, as described by Rabiner et al. [11].

Results
The HMM method was applied to a transposon mutant
library ofM. tuberculosis, constructed by Griffin et al. [6].
This library was grown on minimal media and 0.1% glyc-
erol, and was sequenced on an Illumina GAII sequencer
with a 36 bp read length, resulting in approximately 6 mil-
lion reads. The reads were mapped to the H37Rv genome,
and the read counts at each location in the genome were
quantified (i.e. c1..cN ). The H37Rv genome is 4,411,532 bp
in length, with a GC-content of 65.6%. It contains a total
of 74,605 TA sites, spaced on average 59 bp apart. The
overall insertion density, defined as TA sites with at least
one insertion (ci ≥ 1), is 54.18% (39,762) of all possible
insertion sites. The average read-count at these locations
is c̄ = 195 (discarding the top 5% for robustness).
Themean read count was used to calculate the θ param-

eter for the emission probabilities of the four states as
described above. Using these parameters, the most likely
sequence of states responsible for the observations was
obtained through the Viterbi algorithm. This sequential
ordering of states provides an assessment of the essential-
ity of the entire H37Rv genome, regardless of gene bound-
aries. Table 1 contains some statistics for the distribution
of states and their observations.
A total of 16.6% of the genome is labeled by the essential

state (qES). This is close to the expectations for bacte-
rial organisms, where roughly 10%-15% of the genome
is considered to be essential [2]. The majority of sites
are labeled non-essential (78%), with a small percentage
of sites labeled as growth-defect and growth-advantage
(4.1% and 1.3%). Essential states averaged a very small
number of insertions and read counts (0.006 and 0.2
respectively), demonstrating that the HMM is associat-
ing the essential state with stretches devoid of inser-
tions, though these locations can occasionally contain

Table 1 Statistics for state classifications

Total % Mean # Mean Mean

of genome TA sites insertion read

density counts

Essential 16.6 26.9 0.006 0.2

Growth-defect 4.1 29.2 0.20 22.5

Non-essentials 78.0 111.6 0.7 220.5

Growth-advantage 1.3 32.1 0.9 701.1

Statistics for essentials, growth-defect, non-essential and growth-advantage
regions. Mean insertion density is defined the proportion of TA sites containing
at least one insertion averaged across the regions belonging to a given state.
Mean read counts are defined as the mean value of non-empty read counts
(i.e. ci > 1), averaged across all regions belonging to the given state.
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insertions with a very small number of reads so long as as
the observations at neighboring sites are consistent with
essentiality. In contrast non-essential regions have a mean
insertion density of 70%, and mean read counts of 220 in
this dataset. Growth-defect regions have some insertions
but these are dramatically reduced (20% density and a 10-
fold reduction in mean read counts). Insertion density in
growth-advantage regions is almost saturated (90%), and
mean read counts are on average > 3× larger. As can be
seen in Figure 5, both the mean read counts and inser-
tion frequencies among the states increase with the levels
of non-essentiality (i.e. qES → qGD → qNE → qGA),
reflecting the fact that the HMM is successfully sepa-
rating regions with average read counts and insertions
from those with counts significantly lower or significantly
higher than average.
Figure 6 shows the read counts and state labels observed

in a representative ∼57 kb region of the genome. Genes
are shown as blue arrows, and the corresponding state
classifications are shown at the bottom of the figure. As
evident from this figure, the HMM takes into consider-
ation the fluctuation in read counts observed. Regions
devoid of insertions are classified as essential (green),
those with read-counts close to the average in the library
are classified as non-essential (red), while those regions
with lower and higher read counts than average are clas-
sified as growth-defects (yellow) and growth-advantage
(blue) respectively. Notice that mas (mycocerosic acid

Figure 5Mean insertion density and read counts for regions.
Scatter plot of mean non-zero read counts and mean insertion
frequency for the regions identified by the HMM. Regions are defined
consecutive sites belonging to the same state, and are colored
according to their states (Essential regions: green circles;
Growth-Defect regions: yellow triangle, Non-Essential: red cross, and
Growth-Advantage: blue x’s).

synthase, which is involved in PDIM biosynthesis) has
much higher read counts than the average, and is therefore
identified as a growth-advantage region. A long region of
the genome is identified as non-essential as it contains
read-counts that are closer to the average, despite occa-
sional large spikes in the read-counts. This region includes
mmpL7, which matches the expectations that most genes
in the MmpL family are non-essential in vitro [12].

Analysis of essentiality of individual genes
While the Viterbi algorithm does not take into consider-
ation gene boundaries when determining the labeling of
states, it is often necessary to determine the essentiality of
individual genes in the genome. To determine individual
calls of essentiality, each gene is assigned the essentiality
class belonging to the most frequent state found within its
boundaries. However, because genes may contain a mix-
ture of essential and non-essential domains, genes are also
classified as essential if they contain sub-sequences of sites
belonging to the qES state, which are statistically longer
than expected. Thus a gene is also classified as essential if
it has at least n sites labeled as qES, where n is 3σ above
the expected maximum run length for the gene, based on
the Extreme Value Distribution [6].
The essentiality assignments obtained through the

HMM method can be validated by comparing to those
obtained by Sassetti et al with the Transposon Site
Hybridization (TraSH) method [13], which used a com-
pletely different experimental methodology for read-out
(hybridization versus sequencing). This method has been
used to assess the essentiality of M. tuberculosis in vivo
and in vitro [3,14], by quantifying hybridization to DNA
microarrays imprinted with representative oligos for each
gene. Table 2 shows a comparison between these two
methods. Due to the significantly different methodolo-
gies, a true comparison between these methods is diffi-
cult. For instance, Sassetti et al. recognized that TraSH
probes for essential genes may actually hybridize to adja-
cent non-essential regions, particularly if the genes are
small. While the HMM does not depend on hybridiza-
tion, it may have a difficulty transitioning from one state
to another depending on the size of the gene. In addition,
libraries used by these methods were grown on differ-
ent media and therefore are likely to identify genes that
are involved in pathways that correspond to the specific
growth media used.
Despite these limitations, there is significant agreement

in their assessment of essentiality, with 89.9% of essential
and non-essential genes in concordance with the previ-
ous results (70% concordance between essential genes,
and 95% among non-essential genes). Approximately half
of the genes labeled as ‘growth-defect’ by the HMM were
previously determined to be essentials, and half as non-
essentials, reflecting the borderline nature of these genes
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Figure 6 Read counts and state classifications. Read counts and state classifications for a 57 kb region of the H37Rv genome is shown. Essential
regions are shown in green, growth-defect regions in yellow, non-essential regions in red, and growth-advantage regions in blue. Read counts are
truncated at 2,000 (with a max of ∼3,000 in this region), and the mean read count in the library is represented by a gray horizontal line. Figure
created using IGV - distributed by the Broad Inst. http://www.broadinstitute.org/igv/.

and the utility of having an intermediate category. These
are discussed further below. 27 genes were called ‘growth-
advantaged’ due to an excess of transposon insertions, and
all of these were previously categorized as non-essentials.
Sassetti et al. [3] also defined a set of 42 ‘growth-

defect’ genes. Importantly, these were not characterized
by experimentally determining growth rates in individual
transposon-insertion mutants. Rather, they were identi-
fied as genes that matched the criterion for ‘non-essential’
on the first plating of the library (hybridization ratio> 0.4,
range: 0.41–2.04), but which had much lower ratios upon
re-plating (hybridization ratio < 0.2, thus matching the
criterion for ‘essential’). The interpretation of these genes
is that transposon insertions were not lethal, but that the
mutants had a slower growth rate, resulting in gradual
depletion in the library due to competition during cul-
turing. In the experiment from which the dataset we use
was derived [6], the DNA for sequencing was extracted
from the library immediately after selection, thus corre-
sponding to the ‘first plating’. Consistent with this, most
of these genes (29/42) exhibited transposon insertions
in our dataset and were categorized by the HMM as
non-essential. We speculate that, if the library had been
expanded after selection, clones with insertions in these
genes would have gradually decreased in abundance.
Although the methods disagree on essentiality of some

genes, some of these disagreements may be due to dif-
ferences in the growth media, as well as the different
interpretations of essentiality. For example glpK, a glycerol
kinase, is necessary for glycerol metabolism (and therefore

essential when grown on glycerol), but it is not necessary
when the library is grown on glucose (as in the original
TraSH experiment). In addition, these differences can also
be due to the fact that we identify genes containing essen-
tial domains as “essential”, while this distinction was not
made in the original TraSH experiments. In fact, all of
the genes classified as essential by the HMM and as non-
essential by the TraSH method are devoid of insertions
in the majority of their TA sites or contain stretches that
are significantly longer than expected, suggesting these
genes are essential in this library on glycerol. Among
these genes are ppm1 (Rv2051c) and ppp (Rv0018c), which
independent experiments have shown contain essential
domains [15,16].
In addition to the TraSH method, we compare our

results to those obtained with the reads-based method
developed by Zhang et al. [10]. This method is capable of
assessing the essentiality of the entire genome by looking
at the read counts that fall within windows of 400–600
bp, and estimating a p-value for each of these windows in
the genome to quantify how these regions deviate from
expectations. Our results correlate well with the results
obtained by window-based method, with a 93.72% match
in the classification of genes (i.e. essential and growth-
defects genes, as determined by our HMM, matching
essential and domain-essential genes determined by the
window-based method, and non-essential and growth-
advantage genes matching non-essential genes). In addi-
tion, the essential and growth-defect states had TA sites
with an average p-value of 0.049, and non-essential and

Table 2 Comparison of essentiality predictions with TraSH

HMMmethod

Essential Growth-defect Non-essential Growth-advantage Total

TraSH Essential 427 54 132 0 613

Non-essential 76 35 2383 20 2514

Total 503 89 2515 20 3127

Comparison of essentiality predictions with the TraSH method.

http://www.broadinstitute.org/igv/
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growth-advantage states an average p-value of 0.538
(as determined by the window-based method).

Performance on other datasets
To demonstrate that the HMM works on other datasets,
we ran it on a Tn-Seq dataset from H. influenza (in vitro
dataset SD2, [5]). The H. influenza KW20 genome is less
than half the size of M. tuberculosis (1,830,138 bp, 1724
genes) but significantly more AT-rich (GC content = 38%),
so there are more TA sites (131,960) but they are spaced
more closely (∼14 bp apart). The Tn-Seq dataset con-
tains 736,631 reads, hitting only 37.9% of the TA sites,
with a mean read count of 11.2 (per non-zero site). Run-
ning the HMMon this lower-density dataset results in 372
genes being labeled as essential, 1150 as non-essential, 211
as growth-defect, and 6 as growth-advantage. This dis-
tribution is very close to the assignments determined by
Gawronski et al. [5], who found 363 essentials (with inser-
tions in < 5% of TA sites in the 5–80% region of the ORF),
and 211 growth-defect genes (with insertion frequencies
of 5–40%). The overlap (intersection) between the essen-
tial genes detected by both their method and ours was
94% (341 genes), and the intersection between their list of
growth-defect genes and ours was 60% (127).
The overlap between essential genes found by the HMM

method and those found by Gawronski et al. signifi-
cantly larger than the overlap between the TraSH method
described above (i.e. 94% vs. 70%). This high level of
agreement between the two comparisons suggests that the
quality of the data used in the analysis (i.e. high-resolution
sequencing data vs. hybridization ratios) contributes sig-
nificantly to the quality of the analysis.
In addition, we applied the HMM method to three

modified datasets, constructed to represent libraries of
different sizes and different volumes of sequencing data.
These datasets were constructed by modifying the origi-
nal H37Rv library analyzed before, to emulate cases where
transposon mutant libraries may be sparse or where the
amount of sequencing performed on the library is lower
(i.e. less reads).
The first dataset was constructed by setting the read

counts at random TA sites to zero (i.e. ci = 0), thus
lowering the mean insertion density of the dataset while
keeping the magnitude of the remaining read-counts the
same. This dataset emulates libraries with significantly
less diversity of insertions. The second dataset was con-
structed by randomly perturbing approximately one-half
of the reads, lowering the magnitude of these reads while
keeping the total number of insertions equal. This dataset
represents libraries for which the amount of sequenc-
ing performed is significantly less, producing read counts
with lower magnitudes. The final dataset was a combina-
tion of these two operations, resulting in a dataset with
both lower insertion density and lower mean read count.

Statistics about the distribution of reads and insertions in
these datasets are shown in Table 3.
As can be seen in Table 4, the HMM is robust, and capa-

ble of adapting to libraries with very different insertion
densities and mean read counts, providing results which
are generally consistent with each other. The fraction
of the genome labeled as essential is approximately the
same in all four datasets (approximately 15%). Although
the decreased density will result in longer stretches of
the genome without a transposon insertion, the HMM
is capable of adapting its parameters to become more
conservative in designating regions without insertions as
essential.

Growth-defect and growth-advantage genes
One of the principle advantages of our 4-state HMM is
that it can distinguish local regions of the genome with
significantly depressed or elevated read counts (transpo-
son insertions). The former could represent genes whose
disruption is not lethal but could lead to a growth-defect,
resulting in a lower representation of clones in the library,
and thus a lower abundance of sequencing reads [17].
By analogy, regions with significantly greater than aver-
age reads could represent genes whose disruption leads
to a growth advantage. In the H37Rv dataset, there were
140 genes labeled as qGD (growth-defect), and 27 genes
labeled as qGA (growth-advantage). These are discussed in
turn below.
Among the genes labeled as growth-defect, there are

several notable ones for which a biological explanation
can be made (Table 5; see Additional file 1: Table S1 for
full list). One of these is pbpA, a penicillin-binding pro-
tein in Mtb. Mutants have shown decreased growth rates
and defective cell septation when pbpA is knocked out
M. smegmatis [18]. In addition, the wild-type phenotype
was restored by complementing in pbpA from M. tuber-
culosis, suggesting that pbpA plays an important role in
cell-division and disruption of this gene might lead to
impaired growth in M. tuberculosis. In fact, this region
contains an average insertion density of 0.21, and an
average read-count of 32, significantly below the global
insertion density (0.52) and read-counts (257).

Table 3 Statistics for transposonmutant datasets

Dataset Insertion Mean Median

density read count read count

Glycerol 0.54 257 132

Low density 0.27 257 132

Low reads 0.54 76 39

Low read & density 0.27 76 39

Insertion density and mean read count for the glycerol, low density, low reads
and, low reads and density datasets.
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Table 4 State distribution for transposonmutant datasets

Dataset Essential (%) Growth-defect (%) Non-essential (%) Growth-advantage (%)

Glycerol 16.63 4.05 78.04 1.27

Low density 15.40 7.40 77.20 0.01

Low reads 16.13 6.78 75.51 1.58

Low read & density 13.75 15.64 70.55 0.06

Statistics for percentage of sites labeled as essential, growth-defect, non-essential and growth-advantage in the glycerol, low density, low reads and, low reads and
density datasets.

Recent structural and enzymatic studies have shown
that bfrB and its ortholog, bfrA, are not completely inter-
changeable. Although they are both ferritin proteins used
for iron storage, bfrB has a 20-aa C-terminal extension
that enhances its iron oxidation activity [19]. Thus growth
of bfrB mutants might be hindered because bfrA can-
not perform this function as efficiently. In fact, data from
the original TraSH experiments shows that bfrB had a
much lower hybridization ratio (0.73) compared to bfrA
(2.63), suggesting clones with insertions in bfrB were less
competitive.
Many genes in the mycobactin biosynthesis cluster

(mbtA-J) are also labeled as growth-defect genes, sug-
gesting that transposon mutants are viable but grow
more slowly than wild-type. Because Mtb has only one
(non-heme) iron acquisition system, which is mycobactin-
dependent, these biosynthetic genes are essential in
iron-depleted environments and non-essential in those
environments that are rich in iron. Indeed, it has been
shown that mycobactin-deficient mutants of Mtb, the
growth rate is dependent on the iron concentration
[20]. In the original TraSH experiments (plated on 7H10
medium, ∼ 150 μM Fe), mbtB was specifically shown to
be cause a slow-growth phenotype when disrupted, with
insertion mutants gradually decreasing in abundance in
the library with successive platings [3].
Another interesting growth-defect gene is glpX. glpK

(glycerol kinase), which is the first step in glycerol incor-
poration, is essential as expected (recall that this H37Rv

dataset came from selection of the library on glycerol as
a carbon source). glpX is a fructose-1,6-bisphosphatase,
which also should be required when grown on gluco-
neogenic substrates by circumventing a non-reversible
step in glycolysis pathway to generate glucose [21]. In
Mtb the unexpected non-essentiality of glpX for growth
on glycerol has been previously noted [22]. One pos-
sible explanation is that Rv2131c (cysQ), an inositol
monophosphatase, might also have partial fructose-1,
6-bisphosphatase activity [23].
icl (isocitrate lyase) is also identified as a growth-defect

gene in this dataset. This is one of the two enzymes on
the glyoxylate shunt, which has been shown to be critical
for infection, based on attenuation of knockouts in mice
[24]. As anticipated, icl is essential for growth on fatty-
acid substrates like acetate [24]. However, recent evidence
suggests that the glyoxylate shunt might play a role even
in growth on other carbon sources such as carbohydrates.
For instance, icl knockouts have displayed a growth-defect
(2–4 day lag compared to wild-type) on glucose [25].More
recently, it has been shown that inhibitors of malate syn-
thase (GlcB, the other enzyme of the glyxolate shunt)
are active against cultures whether grown on acetate or
glucose [26]. Thus, the fact that the HMM labels icl
as a growth-defect region in this dataset obtained from
growth on glycerol is consistent with these findings and
suggests that icl plays an unexpected metabolic role in
Mtb even when growing on carbon sources other than
fatty acids.

Table 5 Notable regions classified as growth-defect

Orf Ids Included genes Insertion density Average reads Average nonzero reads

Rv0015c, Rv0016c pknA, pbpA 0.21 6.7 32.3

Rv0467 icl 0.23 4.0 17.6

Rv2379c mbtF 0.23 3.2 14.0

Rv2380c, Rv2381c, Rv2382c mbtE,mbtD,mbtC 0.29 6.4 21.7

Rv3841 bfrB 0.24 4.1 17.2

Rv0126 treS 0.26 6.6 25.8

Rv1097c, Rv1098c, Rv1099c fumC, glpX 0.10 4.0 40.0

Notable Regions labeled as ‘growth-defect’ (GD) by the HMM, in which there is a suppression of reads, suggesting an under-representation of transposon insertions in
the library. Note that a lower read count is reflected in both a low read count (typically around 10–20, compared to the∼ 250 average across the whole genome) and a
low insertion density (∼ 0.20 compared to 0.54 for the whole genome).
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Another gene identified as belonging to the growth-
defect category is treS, which is involved in the trehalose
pathway. Trehalose is one of the principle carbohydrates
synthesized in mycobacteria. It is used in producing cell-
wall glycolipid components (e.g. TMM and TDM, tre-
halose mono- and di-mycolates), and is inter-converted
with other sugars like glucose and maltose. The latter are
polymerized into intracellular glycogen (for energy stor-
age) and capsular glucan. Several genes in this network
have been shown to be essential in vitro, including galU,
glgA, glgB, pep2, and glgE (all essential in our dataset).
However, treS is labeled as a growth-defect gene. treS
is responsible for interconverting trehalose and maltose
[27,28]. It is possible that the organism is sensitive to per-
turbations of this network (given the essentiality of nearby
genes like glgA, and toxicity of intermediate metabolites
like maltose-1-phosphate [29]). In fact, it was previously
shown that transposon-insertion mutants of treS/Rv0126
display a slow-growth phenotype [3].
As noted before, our 4-state HMM is also capable of

detecting regions with unexpectedly high read-counts
that might confer growth-advantages to the organism
when disrupted. The 10 most notable growth-advantage
regions are shown in Table 6 (full list is shown in
Additional file 2: Table S2). One region of the genome
that stands out is the PDIM locus, Rv2930-Rv2939. This
locus contains genes involved in the biosynthesis of
phthiocerol dimycocerosate (PDIM), including fadD26
and ppsABCDE. In addition, other genes outside this locus
believed to be involved in PDIM biosynthesis, like papA5
and mas, are identified as well. These genes contain read
counts well above the global average (∼ 250). fadD26 itself
has a mean read count of 818, more than three times
the average throughout the genome. ppsDE had a mean
read count of 732, and ppsABC a mean read count of
463. PDIM is a cell-wall associated glycolipid that modu-
lates the immune response in the host [30,31]. Although
it is required for virulence (as strains with disruptions of
these genes are attenuated in animal models [32]), it is not
required for survival in vitro [3,5,6]. In fact, biosynthesis

of PDIM requires resources and imparts a metabolic
cost, hence disruption of this pathway is advantageous
to cells. Due to the increased metabolic cost, it is widely
observed thatM. tuberculosis stocks maintained in the lab
frequently lose the ability to synthesize PDIM via acqui-
sitions of mutations in these genes, often leading larger
colony sizes [33]. This growth advantage and consequent
selection effect likely explains why clones with transposon
insertions in the PDIM locus are over-represented in the
library.

Discussion and conclusions
The HMM described in this work enables the charac-
terization of essentiality throughout an entire bacterial
genome from sequencing data of transposon mutagene-
sis experiments. Although several computational methods
have previously been proposed for analyzing Tn-Seq data,
including some based on presence/absence of reads [7-9]
as well as non-parametric models that take quantitative
read counts into consideration [10], an HMM provides
several advantages over these methods. For example, an
HMM provides a smoothing over adjacent sites that cou-
ples them together to help disambiguate the interpretation
of read counts at individuals sites. Another advantage of
using the HMM is that it is not restricted to annotated
gene boundaries, and can identify independent regulatory
regions, non-coding RNAs, and protein domains that are
required for survival. While methods that depend on a
sliding-window (as developed by Zhang et al.) are also
capable of assessing essentiality over the entire genome by
locally averaging over adjacent TA sites, an HMM formal-
izes this process in a statistically rigorous way. In addition,
by assessing essentiality among regions in the genome,
the HMM can also tolerate insertions in the N- and C-
termini of genes, without the need of discarding insertions
at these locations in an ad-hoc manner as some methods
have done previously [5].
A potential limitation of our method is that it does not

take into consideration the doubling-rate or expansion
time of the library when estimating the parameters of the

Table 6 Notable regions classified as growth-advantage

Orf Ids Included genes Length of growth-advantage region Average reads

Rv3295, Rv3296 lhr 27 1098

Rv2939, Rv2940c, Rv2941 papA5,mas, fadD28 149 870

Rv2411c - 25 773

Rv0483 lprQ 36 694

Rv2930, Rv2931, Rv2932, Rv2933, Rv2934, Rv2935 fadD26, ppsA, ppsB, ppsC, ppsD, ppsE 398 655

Rv1843c, Rv1844c guaB1, gnd1 47 633

Rv0554 bpoC 16 622

Rv0479c, Rv0480c, Rv0481c - 32 589

Regions labeled as ‘growth-advantage’ (GA) by the HMM, in which there is an excess of reads, suggesting an over-representation of transposon insertions.
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model. This can affect the under- and over-representation
of mutants, and therefore the number of reads these
genes will contain in the sequence data. Because the
HMM depends on the read counts for individual genes,
it may be susceptible to libraries that are constructed
in different ways. Indeed, the ability to detect essential
genomic regions from transposon-insertion sequencing
data is highly dependent on the quality of the dataset.
In practice, Tn-Seq datasets can span a range from hun-
dreds of thousands to millions of reads, but below some
point, there are not enough reads to discriminate essen-
tial regions confidently. Similarly, well-saturated libraries
can have insertions at > 50% of TA sites, but other
datasets are more sparse (from less diverse libraries),
again increasing the difficulty in distinguishing essential
regions. Additionally, some sites may contain reads that
are orders-of-magnitude larger due to PCR amplification
or the development of “hotspots” due to the interactions
of the transposon and the organism’s replication machin-
ery [34]. These problems could be alleviated by comparing
cultures before and after the passage in the media or com-
paring datasets derived using different transposons with
specificity to different sites. While not directly filtered
by our HMM, we showed that the parameter estima-
tion equations we propose work on a wide range of real
datasets. In particular we show that they work on dense
datasets (M. tuberculosis [6], 54% insertion density), as
well as sparse ones (H. influenza [5], 38%), and even on
artificial datasets down to 25% insertion density. In all
cases, the HMM is stable in that it outputs about the same
proportion of essential regions, so as the volume of data
decreases, the HMM adapts its predictions and becomes
increasingly conservative.
One of the major advantages of using an HMM to ana-

lyze transposon mutagenesis data is that additional states
may be introduced to capture distinct types of genomic
regions (beyond essential and non-essential). In this work
we add states to capture regions whose disruption leads to
a growth defect or a growth advantage. van Opijnen et al.
[17] have shown that relative abundance of insertions in
a gene can be correlated quantitatively with growth rate
(doubling time), though it depends on the number of gen-
erations the culture is allowed to grow. Eventually, clones
with insertions in growth-defect genes will be depleted
from the library due to competition (exponential growth).
Sassetti et al. found substantial reductions in abundance,
even after a second round of plating, where hybridiza-
tion ratios for certain genes dropped from non-essential
(> 0.40) to essential (< 0.20). While our model only dis-
tinguishes one class of growth-defect genes, it could be
expanded to more states, discerning finer gradations of
growth impairment [17].
A total of 140 growth-defect genes, and 27 growth-

advantage genes inM. tuberculosis H37Rv were identified

by our 4-state HMM, several of which have been shown
to be biologically valid, as knockout mutants have been
shown to grow slower (or faster) than the parental strain.
Identifying these finer distinctions of essentiality (in addi-
tion to the traditional essential and non-essential cate-
gories) can enrich our understanding of the biological
roles of genes. For example, we found that icl (isocitrate
lyase) is labeled as growth-defect (on glycerol). Histori-
cally, ICL has been viewed as essential in M. tuberculosis
specifically for growth on fatty-acid substrates, and non-
essential otherwise. However, that view is too limiting. icl
knock-out strains have in fact been observed to display a
growth defect when grown on glucose [25], and the sup-
pression of reads we observed in icl in the transposon
mutagenesis data is consistent with this (glycerol being
another carbohydrate-like substrate), suggesting that this
gene plays an additional role that is not well-appreciated.
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