4,641 research outputs found

    Kinetic energy functional for Fermi vapors in spherical harmonic confinement

    Full text link
    Two equations are constructed which reflect, for fermions moving independently in a spherical harmonic potential, a differential virial theorem and a relation between the turning points of kinetic energy and particle densities. These equations are used to derive a differential equation for the particle density and a non-local kinetic energy functional.Comment: 8 pages, 2 figure

    Metastable states of a ferromagnet on random thin graphs

    Full text link
    We calculate the mean number of metastable states of an Ising ferromagnet on random thin graphs of fixed connectivity c. We find, as for mean field spin glasses that this mean increases exponentially with the number of sites, and is the same as that calculated for the +/- J spin glass on the same graphs. An annealed calculation of the number <N_{MS}(E)> of metastable states of energy E is carried out. For small c, an analytic result is obtained. The result is compared with the one obtained for spin glasses in order to discuss the role played by loops on thin graphs and hence the effect of real frustration on the distribution of metastable states.Comment: 15 pages, 3 figure

    The Impact of SARS-CoV-2 on Sperm Cryostorage, Theoretical or Real Risk?

    Get PDF
    Cryopreservation of human gametes and embryos as well as human reproductive tissues has been characterized as an essential process and aspect of assisted reproductive technology (ART). Notably, sperm cryopreservation is a fundamental aspect of cryopreservation in oncological patients or patients undergoing gonadotoxic treatment. Given that there is a risk of contamination or cross-contamination, either theoretical or real, during the procedures of cryopreservation and cryostorage, both the European Society for Human Reproduction and Embryology (ESHRE) and the American Society for Reproductive Medicine (ASRM) have provided updated guidelines for preventing or reducing the contamination risk of sexually transmitted viruses. Given the ongoing and worldwide COVID-19 pandemic, there is considerable interest in what measures should be taken to mitigate SARS-CoV-2 contamination during cryopreservation and cryostorage of semen samples. The SARS-CoV-2 virus is the virus that causes COVID-19, and whose transmission and infection is mainly aerosol-mediated. Several ART professional societies, including ESHRE and ASRM have proposed measures to mitigate the spread of the SARS-CoV-2 virus. Whether the proposed safety directives are enough to mitigate the possible SARS-CoV-2-contamination of sperm samples during cryopreservation or whether the policies should be re-evaluated will be discussed in this review. Additionally, insights regarding the possible impact of COVID-19 vaccination on the safety of sperm cryopreservation will be discussed

    Blade root moment sensor failure detection based on multibeam LIDAR for fault-tolerant individual pitch control of wind turbines

    Get PDF
    Detection of blade root moment sensor failures is an important problem for fault-tolerant individual pitch control, which plays a key role in reduction of uneven blade loads of large wind turbines. A new method for detection of blade root moment sensor failures which is based on variations induced by a vertical wind shear is described in this paper. The detection is associated with monitoring of statistical properties of the difference between amplitudes of the first harmonic of the blade load, which is calculated in two different ways. The first method is based on processing of the load sensor signal, which contains a number of harmonics. The first harmonic is recovered via least squares estimation of the blade load signal with harmonic regressor and strictly diagonally dominant (SDD) information matrix. The second method is a model-based method of estimation of the first harmonic, which relies on the blade load model and upwind speed measurements provided by multibeam Light Detection and Ranging (LIDAR). This is a new application for future LIDAR-enabled wind turbine technologies. Moreover, adaptation of the load model in a uniform wind field is proposed. This adaptation improves accuracy of the load estimation and hence the performance of the blade load sensor failure detection method

    Human Sperm Chromosomes: To Form Hairpin-Loops, Or Not to Form Hairpin-Loops, That Is the Question

    Get PDF
    Background: Genomes are non-randomly organized within the interphase nucleus; and spermatozoa are proposed to have a unique hairpin-loop configuration, which has been hypothesized to be critical for the ordered exodus of the paternal genome following fertilization. Recent studies suggest that the hairpin-loop model of sperm chromatin organization is more segmentally organized. The purpose of this study is to examine the 3D organization and hairpin-loop configurations of chromosomes in human spermatozoa. Methods: Three-color sperm-fluorescence in-situ hybridization was utilized against the centromeres, and chromosome p- and q-arms of eight chromosomes from five normozoospermic donors. Wide-field fluorescence microscopy and 3D modelling established the radial organization and hairpin-loop chromosome configurations in spermatozoa. Results: All chromosomes possessed reproducible non-random radial organization (p \u3c 0.05) and formed discrete hairpin-loop configurations. However, chromosomes preferentially formed narrow or wide hairpin-loops. We did not find evidence to support the existence of a centralized chromocenter(s) with centromeres being more peripherally localized than one or both of their respective chromosome arms. Conclusion: This provides further evidence to support a more segmental organization of chromatin in the human sperm nucleus. This may be of significance for fertilization and early embryogenesis as specific genomic regions are likely to be exposed, remodeled, and activated first, following fertilization

    Multicolour detection of every chromosome as a means of detecting mosaicism and nuclear organisation in human embryonic nuclei

    Get PDF
    Fluorescence in situ Hybridisation (FISH) revolutionised cytogenetics using fluorescently labelled probes with high affinity with target (nuclear) DNA. By the early 1990s FISH was adopted as a means of PGD sexing for couples at risk of transmitting X-linked disorders and later for detection of unbalanced translocations. Following a rise in popularity of PGD by FISH for sexing and the availability of multicolour probes (5-8 colour), the use of FISH was expanded to the detection of aneuploidy and selective implantation of embryos more likely to be euploid, the rationale being to increase pregnancy rates (referral categories were typically advanced maternal age, repeated IVF failure, repeated miscarriage or severe male factor infertility). Despite initial reports of an increase in implantation rates, reduction in trisomic offspring and spontaneous abortions criticism centred around experimental design (including lack of randomisation), inadequate control groups and lack of report on live births. Eleven randomised control trials (RCTs) (2004-2010) showed that PGS with FISH did not increase delivery rates with some demonstrating adverse outcomes. These RCTs, parallel improvements in culturing and cryopreservation and a shift to blastocyst biopsy essentially outdated FISH as a tool for PGS and it has now been replaced by newer technologies (array CGH, SNP arrays, qRT-PCR and NGS). Cell-by-cell follow up analysis of individual blastomeres in non-transferred embryos is however usually prohibitively expensive by these new approaches and thus FISH remains an invaluable resource for the study of mosaicosm and nuclear organization. We thus developed the approach described herein for the FISH detection of chromosome copy number of all 24 human chromosomes. This approach involves 4 sequential layers of hybridization, each with 6 spectrally distinct fluorochromes and a bespoke capturing system. Here we report previously published studies and hitherto unreported data indicating that 24 chromosome FISH is a useful tool for studying chromosome mosaicism, one of the most hotly debated topics currently in preimplantation genetics. Our results suggest that mosaic embryo aneuploidy is not highly significantly correlated to maternal age, probably due, in part, to the large preponderance of post-zygotic (mitotic) errors. Chromosome loss (anaphase lag) appears to be the most common mechanism, followed by chromosome gain (endoreduplication), however 3:1 mitotic non- disjunction of chromosomes appears to be rare. Nuclear organisation (i.e. the spatial and temporal topology of chromosomes or sub-chromosomal compartments) studies indicate that human morula or blastocyst embryos (day 4-5) appear to adopt a "chromocentric" pattern (i.e. almost all centromeric signals reside in the innermost regions of the nuclear volume). By the blastocyst stage however, a more ordered organisation with spatial and temporal cues important for embryo development appears. We have however found no association between aneuploidy and nuclear organization using this approach despite our earlier studies. In conclusion, while FISH is mostly "dead and buried" for mainstream PGS, it still has a place for basic biology studies; the development of a 24 chromosome protocol extends the power of this analysis

    First occurrence of Scarus ghobban (Actinopterygii: Scaridae) in the coastal waters of Cyprus (Eastern Mediterranean Sea)

    Get PDF
    The first occurrence of the Indo-Pacific blue-barred parrotfish (Scarus ghobban) in the coastal waters of Cyprus is reported. The finding corroborates the establishment of this Lessepsian immigrant along the Levantine coasts

    Authoritarianism masking incompetence? The case of the Republic of Cyprus

    Get PDF
    Authoritarianism, left unchecked to shape the public discourse, can self-propel and legitimise itself, diverting the blame for a degraded public health system from the state onto society

    Book Review: Southern Insurgency, the Coming of the Global Working Class by Immanuel Ness

    Get PDF
    Southern Insurgency, the Coming of the Global Working Class Immanuel Ness, Southern Insurgency, the Coming of the Global Working Class, Chicago, IL: University of Chicago Press, 2015; 224 pp.: ISBN 9780745335995, $28

    A new model of sperm nuclear architecture following assessment of the organization of centromeres and telomeres in three-dimensions

    Get PDF
    The organization of chromosomes in sperm nuclei has been proposed to possess a unique “hairpin-loop” arrangement, which is hypothesized to aid in the ordered exodus of the paternal genome following fertilization. This study simultaneously assessed the 3D and 2D radial and longitudinal organization of telomeres, centromeres, and investigated whether chromosomes formed the same centromere clusters in sperm cells. Reproducible radial and longitudinal non-random organization was observed for all investigated loci using both 3D and 2D approaches in multiple subjects. We report novel findings, with telomeres and centromeres being localized throughout the nucleus but demonstrating roughly a 1:1 distribution in the nuclear periphery and the intermediate regions with \u3c15% occupying the nuclear interior. Telomeres and centromeres were observed to aggregate in sperm nuclei, forming an average of 20 and 7 clusters, respectively. Reproducible longitudinal organization demonstrated preferential localization of telomeres and centromeres in the mid region of the sperm cell. Preliminary evidence is also provided to support the hypothesis that specific chromosomes preferentially form the same centromere clusters. The more segmental distribution of telomeres and centromeres as described in this study could more readily accommodate and facilitate the sequential exodus of paternal chromosomes following fertilization
    • …
    corecore