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Abstract

Detection of blade root moment sensor failures is an important problem for

fault-tolerant individual pitch control, which plays a key role in reduction of

uneven blade loads of large wind turbines. A new method for detection of blade

root moment sensor failures which is based on variations induced by a vertical

wind shear is described in this paper. The detection is associated with monitor-

ing of statistical properties of the difference between amplitudes of the first har-

monic of the blade load, which is calculated in two different ways. The first

method is based on processing of the load sensor signal, which contains a num-

ber of harmonics. The first harmonic is recovered via least squares estimation

of the blade load signal with harmonic regressor and strictly diagonally domi-

nant (SDD) information matrix. The second method is a model-based method

of estimation of the first harmonic, which relies on the blade load model

and upwind speed measurements provided by multibeam Light Detection and

Ranging (LIDAR). This is a new application for future LIDAR-enabled wind

turbine technologies. Moreover, adaptation of the load model in a uniform

wind field is proposed. This adaptation improves accuracy of the load estimation

and hence the performance of the blade load sensor failure detection method.

Motivation and Description of the
Detection Method

Individual pitch control and unreliable blade
load measurements

Individual pitch control (IPC) is the only suitable tool for

mitigation of uneven blade loads [1–9]. IPC reduces main-

tenance costs and increases efficiency and lifetime of the tur-

bine components through significant contribution to load

reduction. IPC is based on the blade load measurements

provided by strain gauge resistors, where the resistance

changes in the case of loading. The lifetime of the strain

gauge is normally not very long and the main sources of the

errors are the following: (1) sensitivity to temperature varia-

tions which results in a zero load drift, temperature distri-

bution over the material and thermal stresses; (2) transverse

sensitivity; (3) humidity which results in variation in stiff-

ness of the composite materials; (4) strain cycling which

introduces a zero shift; (5) fatigue of the material which

results in a zero shift, change in gauge factor, and possible

gauge failure in fatigue; (6) cable effects that might change

the resistance, capacitance, insulation, and screening.

The factors listed above together with many other fac-

tors are the reasons for the high failure rates of blade load

sensors. The failure rates are especially high for off-shore

wind turbines due to severe environmental conditions.

An average failure rate is one failure per year. For wind

ª 2014 The Authors. Energy Science & Engineering published by the Society of Chemical Industry and John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.

107

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Publication Library

https://core.ac.uk/display/70618857?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


turbines with three blades, the failure rate is approxi-

mately three failures per year [10].

Performance improvement of the blade load sensor

failure detection mechanism is a challenge in the IPC sys-

tem, which plays a key role in reduction of uneven blade

loads of large wind turbines. On the other hand, new

laser sensor Light Detection and Ranging (LIDAR) tech-

nologies which are capable of measuring wind speed at a

distance in front of the turbine will be widely used in

future in a number of turbine control loops aiming to

performance improvement via integration of proactive

capabilities. This will result in LIDAR-assisted proactive

turbine speed control, collective pitch angle control as

well as yaw and individual pitch control, see [11–14] for

details. Preview information, provided by the LIDAR usu-

ally results in a feedforward part which is properly inte-

grated into the existing feedback controller. Information

provided by the LIDAR might also be used for fault

detection purposes (so far it was used for control only).

LIDAR sensors are traditionally configured with a single

beam. New generation of LIDAR sensors are equipped

with many beams at different angles providing new

opportunities for accurate estimation of incoming wind

field [15,16]. In particular, LIDAR-enabled blade load

estimation may result in a new class of blade load fault

detection methods with improved detection capabilities.

This is a new application for future wind turbine technol-

ogies based on multibeam LIDAR.

Notice that the load model driven by upwind speed

measurements is suitable for estimation of the first har-

monic only, whereas load sensor signal contains a number

of harmonics. Therefore, a reduction of uneven loads is

more efficient for IPC, which is driven by the load sensor

signal, provided that a pitch actuator is fast enough to

counteract higher harmonics [8]. IPC which is based on

LIDAR measurements [9] is used in the system in the

case of blade load sensor failure. Information provided by

LIDAR ensures fault tolerance of IPC as an ability of the

system to maintain control objectives, despite the occur-

rence of a failure in the blade root moment sensor.

Detection method based on turbine cycle
variations

A new method for detection of blade root moment sensor

failures which is based on a vertical wind shear estimation

is described in this paper. Wind shear is almost always

present in the wind speed distribution (see Fig. 2 in [9]),

which illustrates a vertical wind shear. Traditional detec-

tion methods are usually based on monitoring of a

change in mean value of the sensor signal (see [10] for

example), whereas turbine cycle variations act as a distur-

bance, leading to deterioration of the detection perfor-

mance and misdetection. This detection method is based

on monitoring of the turbine cycle variations and

captures information, which was previously ignored. Assess-

ment of turbine cycle variations provides the basis for fast

detection methods with respect to the methods, which are

based on monitoring of the mean value. Fast detection is

especially efficient in the case of drifting sensor failures.

The method is based on monitoring of the evolution of

the first harmonic of the signal in the turbine cycle load-

ing, which appears due to the wind shear. Amplitude of

the first harmonic is estimated in two ways, which are

described as follows: (1)The first harmonic can be

extracted from the blade root moment sensor signal,

which contains a number of harmonics and a measure-

ment noise. A number of algorithms can be used for esti-

mation of the first harmonic, taking into account a

property of persistence of excitation of the blade root

moment sensor signal in the presence of the wind shear.

This method is associated with processing of the blade

load signal using least-squares algorithm with harmonic

regressor [17–21] for estimation of amplitude of the first

harmonic. (2) LIDAR-enabled blade load estimation

opens new opportunities for the model-based blade load

sensor fault detection. The first harmonic of the turbine

cycle loading can be estimated using upwind speed mea-

surements in multibeam configuration which is illustrated

in Figure 1. This method is referred as a model-based

blade load estimation method, driven by upwind speed

measurements.

Estimation of the first harmonic described above is based

on two sensors with different measurement principles, and

H

H - L/2

H + L/2 V1

V2

WIND SHEAR  V1 > V2

LIDAR

D

Figure 1. Multibeam LIDAR measurements of two wind speeds V1

and V2 (located at the heights which are equal to the hub height H

with the half of the blade length L added/subtracted) at a distance D

in front of the turbine. A periodic loading appears on the blades with

the rotation of the turbine rotor in the presence of a vertical wind

shear, which is associated with a change (increase) in wind speed

with height, V1 > V2. This periodic loading has a number of

harmonics and a first harmonic is associated with the rotational

frequency.
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therefore can be combined for a high performance failure

detection. The detection is associated with monitoring of

statistical properties of the difference between amplitudes

of the first harmonic calculated in two different ways.

Notice that load sensors (strain gauges), located on the

fixed part of the nacelle, which measure tilt and yaw

nacelle moments, could also be used for estimation of the

blade loads via inverse Coleman transformation as is

described in [10]. The same measurement principle asso-

ciated with estimated and measured blade loads together

with inaccuracies in Coleman transformation (see [22] for

details) result in poor detection performance in this case.

The fault detection method proposed in this paper is

associated with a change detection, where the change in

parameters of distribution of the difference between

amplitudes of the first harmonic identifies the fault.

Three types of faults can be detected: (1) abrupt jump

faults with a step-like behavior, where the signal changes

abruptly from the nominal value to a faulty value; (2)

incipient faults with a drift-like behavior, where the signal

gradually changes from the nominal value to a faulty value;

(3) intermittent faults, where the signal changes from the

nominal value to a faulty value, and returns to the nominal

value after some time. All three types of faults can be iden-

tified via detection of the changes in the parameters of dis-

tribution of the difference between the amplitudes.

Notice that this paper does not cover all types of faults

which may appear in a wind turbine. Additional fault sce-

narios together with a benchmark wind turbine model are

presented in [23].

New Detection Method of the Blade
Load Sensor Failures

Model of the flapwise bending moment:
accounting for higher harmonics

Two wind speeds, measured at different heights, see Fig-

ure 1, are the input to the turbine load model. The periodic

individual blade wind speeds Vi, i = 1, 2, 3, defined at the

center of each blade in rotating frame can be calculated

using these two wind speeds (as boundary conditions),

which together with the turbine rotor speed xr are associ-

ated with the individual blade tip-speed ratio ki as follows:

ki ¼ xrR

Vi
(1)

where R is the rotor radius. Individual blade wind speeds

have a fundamental frequency associated with a turbine

rotational speed. The individual blade wind speed

together with the pitch angle and rotor speed define the

individual blade flapwise bending moment Mf,i, which

can be presented as an average value and a periodic com-

ponent induced by wind shear. This component contains

the first harmonic of the turbine rotational frequency and

high order harmonics and can be described as follows:

Mf ;i ¼ A0 þ
Xd
h¼1

Ah;i cosðhxrtÞ (2)

where A0 = A0(V, xr, bc) is the average value of the flap-

wise bending moment, and Ah,i = Ah,i(V1, V2, xr, bc) is the
amplitude of the harmonic h, where d is a total number of

harmonics. The average value of the flapwise bending

moment depends on the hub wind speed V, turbine speed

xr and collective pitch angle bc. The amplitudes depend on

two wind speeds V1 and V2, which characterize wind shear,

see Figure 1, turbine speed and collective pitch angle.

Notice that wind shear consists of vertical and horizon-

tal components. A vertical component is accounted only

in this model as the most pronounced component of the

wind shear. A horizontal component, which is not

accounted in this model is treated as stochastic variations

of the amplitudes.

Processing of persistently exciting blade
root moment sensor signal: amplitude
estimation

Discrete-time measurements of individual blade flapwise

bending moment Mfk (where index i is dropped for

simplicity) with d harmonics can be written as follows:

Mfk ¼
Xd
h¼1

Ahk cos ðhxrkkÞ þ nk ¼ uT
k h�k þ nk (3)

where uk is the harmonic regressor and h*k is the vector

of unknown parameters defined as follows:

uT
k ¼ ½cos ðxrkkÞ cos ð2xrkkÞ
cos ð3xrkkÞ. . . cos ðdxrkkÞ�

(4)

hTk� ¼ ½A1k A2k A3k. . .A2k� (5)

where xrk is a discretized turbine speed, ξk is a zero mean

white Gaussian measurement noise, k = 1, 2, . . . is the

step number. Notice that the average value of the flapwise

bending moment can be easily estimated using a low-pass

filter and subtracted from the individual blade flapwise

bending moment signals. Therefore, signal (3) contains

the periodic component only. Least-squares estimate:

hTk ¼ ½Â1k Â2k Â3k . . . Âdk� (6)

of unknown parameter vector h*k in a window of a size N,

which is moving in time, can be written as follows [19]:
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hk ¼
Xk

j¼k�Nþ1

uju
T
j

" #�1 Xk
j¼k�Nþ1

ujMfj (7)

and the first harmonic Mffk is recovered according to the

relation:

Mffk ¼ Â1k cos ðxrkkÞ (8)

where Â1k is estimated amplitude of the first harmonic.

The matrix
Pk

j¼k�Nþ1

uju
T
j is called as information matrix

and it is an SDD matrix for a sufficiently large window size

[20]. The SDD matrix can easily be inverted making algo-

rithm computationally efficient and implementable. More-

over, estimated parameters can also be rapidly and

accurately calculated without matrix inversion [21].

Estimation problem stated above is a challenging esti-

mation problem due to time-varying amplitudes and

rotational speed. The accuracy of estimation can be

improved via reduction of the window size for fast vary-

ing parameters. The properties of the information matrix

based on harmonic regressor have not been studied for a

sufficiently small window size N. The case, where the win-

dow size is not large enough for information matrix to be

an SDD matrix is considered in the Appendix. A positive

definiteness of the information matrix based on harmonic

regressor with four components is shown in this Appen-

dix using the partitioning method.

A measurement noise together with non-stationary nat-

ure of estimated parameters and turbine rotational speed are

the main obstacles to high performance estimation of the

first harmonic of the flapwise bending moment in real-time.

Post-processing estimation, where all the signals are

saved in the buffer and future values of the measured sig-

nal are available shows significant improvement with

respect to real-time estimation (see Fig. 2).

Model-based estimation of the amplitude of
the first harmonic

Two wind speeds which are measured at a distance in

front of the turbine (see Fig. 1) are used for model-based

estimation of the amplitude of the first harmonic of blade

load. The wind speeds which are expected to arrive to the

turbine site after some time can be calculated using a

classical frozen turbulence assumption [24]. Expected

periodic individual blade wind speeds Vie, i = 1, 2, 3

defined at the center of each blade in rotating frame can

be calculated using two expected wind speeds. Expected

periodic individual blade wind speeds together with tur-

bine speed and pitch angle are the inputs to the look-up

table, which estimate individual blade flapwise bending

moments as follows:

Mfm;i ¼ f ðVie;xr; bcÞ (9)

This model is suitable for estimation of first harmonic of

turbine rotational frequency only. This harmonic appears

in the load in the presence of the wind shear. Amplitude

of this harmonic Â1mk is estimated using least squares

method. Notice that two techniques of estimation of the

first harmonic described above are based on sensors with

different measurement principles and therefore can be

combined for high performance failure detection.

Monitoring of the amplitude of the first
harmonic: outlier detection

Blade load sensor failure detection mechanism is driven

by two sensors: (1) LIDAR, which measures two wind

speeds at a distance in front of the turbine, and (2) blade

strain gauges, which measure a flapwise bending moment.

A chart of the detection mechanism is presented in

Figure 3. Two amplitudes of the first harmonic of rota-

tional frequency are estimated and compared. A differ-

ence between the amplitudes DAk ¼ Â1mk � Â1k, which is

calculated in two ways is normally distributed with a zero

mean value for healthy system. The parameters of such

distribution can be identified using a sufficiently large

number of measured points in the case of a healthy sys-

tem. The fault detection is associated with a change detec-

tion, where the change of the parameters of this

distribution identifies the fault.
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Figure 2. Reconstruction of the first harmonic from a noisy blade

load signal in post processing. Measured signal of the flapwise

bending moment, which contains four harmonics is plotted with a

blue line. The first harmonic is plotted with a green line, and estimate

of this harmonic is plotted with a red line. The flapwise bending

moment is presented in normalized unit.
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A slow drift of the amplitude of the first harmonic of

the strain gauge signal is shown as an example in Figure 4

with corresponding distributions plotted in Figure 5.

Such a drift may appear due to the fatigue of the material

in the cycle loading or humidity change, which results in

a change of gauge factor (see section Individual pitch

control and unreliable blade load measurements for all

types of faults).

Each sample of the difference between amplitudes

should belong to a parent distribution, associated with a

healthy system. The fault is detected if the sample is iden-

tified as an outlier (outlier is an observation point which

is distant from other observations).

An outlier is detected via a two sample t-test, where a

hypothesis that a mean value of the distribution that

describes a healthy system is equal to the suspected out-

lier, which is treated as a mean value of a virtual distribu-

tion [25], is taken as a null hypothesis. This hypothesis is

tested against an alternative hypothesis that the observa-

tion point does not belong to the parent distribution that

describes the healthy system. The failure is detected if the

null hypothesis is rejected in favor of an alternative

hypothesis.

A slow drift can also be detected via monitoring of the

fluctuations of the mean value of the difference between

the amplitudes. This monitoring is performed in a win-

dow of a certain size, which is moving in time. Notice

that the difference in mean values should be statistically

significant for reliable detection of the fault. This can be

verified using the two sample t-test, where a significance

level represents trade-off between fastness and detection

performance.

Adaptation of the Load Model

The performance of the detection mechanism, described

above, depends on the performance of the load model,

which is a mean value model that describes the flapwise

blade root bending moment (see Fig. 3). The model of

the flapwise bending moment is presented in the form of

look-up tables (the surfaces in three-dimensional space)

with the tip-speed ratio and blade pitch angle as input

variables. The mean value of the bending moment calcu-

lated via look-up tables should coincide with the outputs

of the blade load sensors in a uniform wind field for the

LIDAR

BLADE

LOAD MODEL

SENSOR

FAULT

FILTER

MODEL-BASED LOAD ESTIMATION

SIGNAL PROCESSING PART

STRAIN GAUGE

LOOK-UP TABLES

DIFFERENCE IN AMPLITUDES

Figure 3. Detection of blade load sensor faults.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−0.2

0

0.2

0.4

0.6

0.8
HEALTHY SYSTEM

A
M

P
LI

T
U

D
E

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−1

−0.5

0

0.5

1
FAILED SYSTEM

STEP NUMBER

A
M

P
LI

T
U

D
E

FAILURE

Figure 4. A time chart of the amplitudes of

the first harmonic of the healthy system (the

first subplot) and a failed system (the second

subplot). Amplitudes of the first harmonic

calculated using load model and sensor signal

are plotted with black and red lines,

respectively. Incipient fault associated with a

slow drift occurs in step number 700.

Histograms of healthy and failed systems are

plotted in Figure 5.
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healthy system. Deviations between the load sensor mea-

surements and output of the model necessitate adaptation

of the model, provided that the wind field is uniform.

The uniformity of the wind speed across the rotor swept

area is detected by comparison of the blade load sensor

signals of all three blades and/or by LIDAR measure-

ments. Average values of the load calculated using blade

load sensors in a number of working points are memo-

rized for adaptation of look-up tables. The data should be

acquired over a relatively large time segment to ensure

statistical consistency. Notice that additional requirements

may be imposed on input data to avoid erroneous adap-

tation. If new data are available in a certain operating

region only (e.g., at low wind speeds and for small pitch

angles), then the part of the surface parameters is adapted

(e.g., gradient in pitch angle direction). Adaptation of the

look-up table is associated with a motion of the surface

in three dimensional space (see Fig. 6). The position and

orientation of the surface in three-dimensional space

change only after adaptation, which in turn allows for a

prediction of the bending moment for a wide range of

operating variables. This adaptation method was devel-

oped first in automotive applications [25] and was suc-

cessfully applied to turbine model validation with fusion

of simulation and measurement data on Big Glenn wind

turbine, located outside Gothenburg, Sweden [26].
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Figure 5. Histogram of the difference between the amplitudes of the

first harmonic for a healthy system (plotted with red color) and for a

failed system, plotted with blue color.
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Figure 6. The flapwise bending moment is

presented as a surface with tip-speed ratio and

pitch angle as input variables for a certain

turbine speed [14]. Mean values of measured

flapwise bending moment are plotted with

plus signs of a red color. The surface is

adapted against measured data, minimizing

deviations between the surface and measured

points. All variables are presented in

normalized units.
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Conclusion

Increasing demands on operational reliability, safety, and

power output of wind turbines necessitate the develop-

ment of new high-performance fault detection techniques.

High-performance fault detection is directly associated

with predictive maintenance [27], where a component is

replaced before the system breaks down, which implies

significant savings as well as increases power output.

Moreover, high performance fault detection methods are

the basis for novel fault-tolerant turbine control strategies,

where a fault is predictively detected, and the turbine is

switched to a safe operation mode to prevent damages,

until a maintenance crew arrives at the turbine site. This

extends the turbine operation time and increases the

power output. Fault tolerance is associated with an ability

of the turbine control system to maintain control objec-

tives, despite the occurrence of a fault [28–30]. New blade

load sensor fault detection technique proposed in this

paper is the basis for high performance fault-tolerant IPC.

This is also a new application for future multibeam

LIDAR technology, which is utilized now in the preview-

based control only. New detection algorithms can be eas-

ily integrated into existing IPC functionality aiming for

improvement of uneven load reduction for large turbines.
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APPENDIX:
Positive Definiteness of Information Matrix
for Insufficiently Large Window Size:
Partitioning Method for the Case of Four
Harmonics

Consider the following harmonic regressor:

uT
k ¼ ½cos ðxkÞ cos ð2xkÞ cos ð3xkÞ cos ð4xkÞ� (A1)

where x is a constant rotational frequency and hx with

h = 2, 3, 4 are higher harmonics, k = 1, 2, . . . is the step

number. Consider the following information matrix

calculated over the window of a size N:

G ¼ GT ¼
XN
k¼1

uku
T
k ¼

g11 g12 g13 g14
g12 g22 g23 g24
g13 g23 g33 g34
g14 g24 g34 g44

2
664

3
775

Elements of the matrix G can be evaluated explicitly

using the following relation:

XN
k¼1

cos ðhxkÞ ¼ cos ðNþ1
2 hxÞ sin ðN2 hxÞ

sin hx
2

(A2)

where h = 1, . . ., 4. The first two elements of the first

row of this matrix are presented below:

g11 ¼
XN
k¼1

cos2 ðxkÞ ¼ N

2|{z}
average part

þ sin ðNxÞ cos ððN þ 1ÞxÞ
2 sinx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

periodic part

g12 ¼
XN
k¼1

cos ðxkÞ cos ð2xkÞ ¼

¼ 1

2

cos ð3ðNþ1Þ
2 xÞ sin ð3N2 xÞ
sin 3x

2

þ 1

2

cos ðNþ1
2 xÞ sin ðN2 xÞ
sin x

2

(A3)

All other elements of this matrix can be evaluated using

similar arguments.

Partitioning of Matrix G

Symmetric matrix G can be partitioned as follows:

G ¼ A B
BT C

� �

where

A ¼ g11 g12
g21 g22

� �
; B ¼ g13 g14

g23 g24

� �
and C ¼ g33 g34

g34 g44

� �

Notice that the diagonal elements of the matrices A and

C have periodic part and average part N/2, whereas all

other elements of matrices A, B and C have periodic parts

only. Matrix G becomes an SDD matrix for a sufficiently

large window size N. Suppose that the window size N is

large enough for matrices A and C to be SDD matrices,

but it is not sufficiently large for matrix G to be an SDD

matrix. The matrix G is positive definite if and only if the

matrices A and C � BT A�1B are positive definite matri-

ces (see theorem 7.7.6 in [31]). Inverse of the matrix A

can be approximated as A�1 � D ¼ 2
N I, when neglecting

periodic part in matrix A, where I is the identity matrix.

The matrix BTB also has an average part that is propor-

tional to the window size N. This part is canceled by the

diagonal elements of matrix D in the term BT A�1B.

Therefore there exists a large enough window size N such

114 ª 2014 The Authors. Energy Science & Engineering published by the Society of Chemical Industry and John Wiley & Sons Ltd.

Sensor Failure Detection A. Stotsky



that the matrix C � BT A�1B is an SDD matrix. Hence

the matrix G is a positive definite matrix, since matrix A

is also an SDD and positive definite matrix. Notice that

the matrix G is not an SDD matrix.

This technique of determination of positive definiteness

of information matrix is illustrated via numerical example

in the next Section.

Numerical example

Consider the following information matrix G based on

the regressor equation (A1) with x = 0.0228 and the win-

dow size N = 83:

G ¼
34:4747 16:2691 �1:9465 �4:8693
16:2691 46:5787 19:8127 �10:6043
�1:9465 19:8127 37:9209 22:3866
�4:8693 �10:6043 22:3866 42:5117

2
664

3
775

This matrix G is not an SDD matrix since the diagonal

elements in the second and the third rows are not

larger than the sum of the magnitudes of all the other

(non-diagonal) entries in the second and third rows.

Nevertheless, the matrices A ¼ 34:4747 16:2691
16:2691 46:5787

� �
and

C � BTA�1B ¼ 26:7629 26:5384
26:5384 40:0503

� �
are positive definite

and SDD matrices. Therefore the matrix G is a positive def-

inite matrix. Notice that the matrices A and C�BTA�1B are

still positive definite (but not SDD) matrices even for a

sufficiently small window size N.
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