3 research outputs found

    GLP-1R signaling neighborhoods associate with the susceptibility to adverse drug reactions of incretin mimetics

    No full text
    G protein-coupled receptors are important drug targets that engage and activate signaling transducers in multiple cellular compartments. Delineating therapeutic signaling from signaling associated with adverse events is an important step towards rational drug design. The glucagon-like peptide-1 receptor (GLP-1R) is a validated target for the treatment of diabetes and obesity, but drugs that target this receptor are a frequent cause of adverse events. Using recently developed biosensors, we explored the ability of GLP-1R to activate 15 pathways in 4 cellular compartments and demonstrate that modifications aimed at improving the therapeutic potential of GLP-1R agonists greatly influence compound efficacy, potency, and safety in a pathway- and compartment-selective manner. These findings, together with comparative structure analysis, time-lapse microscopy, and phosphoproteomics, reveal unique signaling signatures for GLP-1R agonists at the level of receptor conformation, functional selectivity, and location bias, thus associating signaling neighborhoods with functionally distinct cellular outcomes and clinical consequences. Agonists of the glucagon-like peptide-1 receptor are used to treat diabetes and obesity. Here, Wright et al. investigate the subcellular location of the receptor's signaling events and uncover associations between signaling profiles and adverse drug reactions

    IDENTIFICATION OF AN IMPORTANT FACTOR INVOLVED IN CCHFV INFECTION

    No full text
    Despite intensive research, much of the molecular pathogenesis of CCHFV is still unknown. Genome-wide screening methods (particularly CRISPR/Cas9-based screens and insertional mutagenesis in haploid cell systems) have facilitated and accelerated the identification and characterization of host genes involved in infectious diseases. Combining haploid cells with genome saturating chemical mutagenesis using N-Ethyl-N-nitrosourea, we have developed an unbiased screening system that interrogates single nucleotide variants for their relevance in viral infections. To identify host factors involved in CCHFV infections, we performed resistant screens with a viral RNA replication competent vesicular stomatitis virus, pseudotyped with the glycoproteins of the CCHFV (VSV-CCHF_G). Resistant clones were individually selected, expanded and rescreened using the infectious CCHFV IbAr10200 laboratory strain. Subsequently, whole exome sequencing was conducted on the resistant clones. Three clones showing nearly 100% resistance to CCHFV displayed mutations in the gene encoding for protein we named X. Through the use of knocked out haploid and diploid cells as well as soluble form of this protein on VSV-CCHF_G, CCHFV IbAr 10200 and CCHFV isolate, we showed that this protein is important for CCHFV infection. These data were then confirmed in vivo, in a mice model. By using an unbiaised screening system, our study identified an important factor involved for CCHFV cell entry and infection

    Crimean-Congo haemorrhagic fever virus uses LDLR to bind and enter host cells

    Get PDF
    Climate change and population densities accelerated transmission of highly pathogenic viruses to humans, including the Crimean-Congo haemorrhagic fever virus (CCHFV). Here we report that the Low Density Lipoprotein Receptor (LDLR) is a critical receptor for CCHFV cell entry, playing a vital role in CCHFV infection in cell culture and blood vessel organoids. The interaction between CCHFV and LDLR is highly specific, with other members of the LDLR protein family failing to bind to or neutralize the virus. Biosensor experiments demonstrate that LDLR specifically binds the surface glycoproteins of CCHFV. Importantly, mice lacking LDLR exhibit a delay in CCHFV-induced disease. Furthermore, we identified the presence of Apolipoprotein E (ApoE) on CCHFV particles. Our findings highlight the essential role of LDLR in CCHFV infection, irrespective of ApoE presence, when the virus is produced in tick cells. This discovery holds profound implications for the development of future therapies against CCHFV. Laboratory and clinical strains of Crimean-Congo haemorrhagic fever virus use LDLR to bind and enter host cells in blood vessel organoids and mice. Infection can also occur through ApoE, possibly present on virus particles
    corecore