85 research outputs found

    A framework for managing airport grasslands and birds amidst conflicting priorities

    Get PDF
    Management of modern airports is a task beset by conflicting priorities. Airports are vital to the global market economy, but impose costly environmental disturbances including habitat loss, noise, reduced air quality, erosion, introduction of invasive organisms, and polluted storm-water runoff (Blackwell et al. 2009). Airport environments also attract some wildlife hazardous to aviation safety, namely species involved in wildlife-aircraft collisions or ‘strikes’ (ICAO 2001, Blackwell et al. 2009, DeVault et al. 2011). Since 1912 at least 276 human lives have been lost due to bird strikes (Thorpe 2010), and from 1990 to 2010, more than 106 000 bird strikes involving civil aircraft were reported to the US Federal Aviation Administration (FAA; http://wildlife-mitigation. tc.faa.gov/wildlife/). Dolbeer (2006) reported that for strikes resulting in substantial aircraft damage (ICAO 1989), 66% occurred below 152 m altitude and within 1.5 km of a runway for airports servicing piston-powered aircraft only, and within 3 km of a runway for airports servicing turbine-powered aircraft (FAA 2009). Consequently, aviation authorities prioritize human safety over wildlife conservation in management of airport habitats (ICAO 2001, FAA 2009). Despite these problems, airports have been proposed as candidates for biodiversity conservation (Kelly & Allan 2006, Blackwell et al. 2009). For example, Kutschbach- Brohl et al. (2010) report that airport grasslands can provide habitat for a range of arthropod communities (e.g. Lepidoptera), and suggest the possibility of conserving these communities while minimizing provision of prey resources to birds recognized as hazardous to aviation. Moreover, declines in grassland bird populations in Europe and North America due to agricultural intensification and development have focused attention on enhancing quality and quantity of remnant grasslands (Herkert 1994, Vickery et al. 2004), including airport grasslands. In North America, airport properties have been identified as key areas of remnant grasslands important to obligate grassland bird species; species that both nest and forage in grasslands (Vickery et al. 1994, Askins et al. 2007). Airport properties in the contiguous USA include \u3e 330 000 ha of grassland, mostly annually mown areas, constituting 39–50% of airport property (DeVault et al. 2012). However, there is little research specific to airport environments that considers food resources for birds (Bernhardt et al. 2010, Kutschbach-Brohl et al. 2010), how birds perceive and react to predation risk (Baker & Brooks 1981) or disturbance (Kershner & Bollinger 1996), and no adequate assessment of how grassland management might affect strike risk (Blackwell et al. 2009, Martin et al. 2011). In this context, we contend that promoting conservation of obligate grassland birds and managing to reduce bird hazards to aviation safety combines two potentially conflicting objectives in a single management framework. Ecologically based guidance to solve this potential conflict is limited, if not oversimplified. Here, we question the potential use of airports to conserve grassland birds, and assess the challenges in managing airport grasslands in light of current ecological and behavioral frameworks. We consider conditions for conservation of obligate grassland birds on airports, and evidence on the use of airports by frequently struck, grassland birds (both obligate and facultative). We also provide a framework to manage grassland birds at airports, given current information and uncertainty. Because of the availability of strike data via the FAA, our focus is on North America. However, problems associated with bird use of airport grasslands are international (ICAO 2001). Therefore, our ultimate purpose is better to inform current management, but also identify research gaps and establish specific predictions that will guide future studies on the ecological basis of use of airport grasslands by birds

    Using random forests to diagnose aviation turbulence

    Get PDF
    mospheric turbulence poses a significant hazard to aviation, with severe encounters costing airlines millions of dollars per year in compensation, aircraft damage, and delays due to required post-event inspections and repairs. Moreover, attempts to avoid turbulent airspace cause flight delays and en route deviations that increase air traffic controller workload, disrupt schedules of air crews and passengers and use extra fuel. For these reasons, the Federal Aviation Administration and the National Aeronautics and Space Administration have funded the development of automated turbulence detection, diagnosis and forecasting products. This paper describes a methodology for fusing data from diverse sources and producing a real-time diagnosis of turbulence associated with thunderstorms, a significant cause of weather delays and turbulence encounters that is not well-addressed by current turbulence forecasts. The data fusion algorithm is trained using a retrospective dataset that includes objective turbulence reports from commercial aircraft and collocated predictor data. It is evaluated on an independent test set using several performance metrics including receiver operating characteristic curves, which are used for FAA turbulence product evaluations prior to their deployment. A prototype implementation fuses data from Doppler radar, geostationary satellites, a lightning detection network and a numerical weather prediction model to produce deterministic and probabilistic turbulence assessments suitable for use by air traffic managers, dispatchers and pilots. The algorithm is scheduled to be operationally implemented at the National Weather Service's Aviation Weather Center in 2014. Document type: Articl

    Practising an explosive eruption in Iceland: outcomes from a European exercise

    Get PDF
    A 3 day exercise simulating unrest and a large explosive eruption at Katla volcano, Iceland, was conducted in January 2016. A large volume of simulated data based on a complex, but realistic eruption scenario was compiled in advance and then transmitted to exercise participants in near-real time over the course of the exercise. The scenario was designed to test the expertise and procedures of the local institutions in charge of warning and responding to volcanic hazards, namely the volcano observatory, national civil protection, and the local university-science sector, as well as their interactions with the European science community and the London Volcanic Ash Advisory Centre. This exercise was the first of this magnitude and scope in Iceland and has revealed many successful developments introduced since the 2010 Eyjafjallajökull and 2011 Grímsvötn eruptions. Following the exercise, 90% of participants said that they felt better prepared for a future eruption. As with any exercise, it also identified areas where further development is required and improvements can be made to procedures. Seven key recommendations are made to further develop capability and enhance the collaboration between the volcano observatory, volcano research institutions and civil protection authorities. These recommendations cover topics including notification of responders, authoritative messaging, data sharing and media interaction, and are more broadly applicable to volcanic institutions elsewhere. Lessons and suggestions for how to run a large-scale volcanic exercise are given and could be adopted by those planning to rehearse their own response procedures.This work was funded by the European Community’s FP7 Programme grant 308377 (Project FUTUREVOLC).Peer Reviewe
    corecore