388 research outputs found

    Chemotaxis: a feedback-based computational model robustly predicts multiple aspects of real cell behaviour

    Get PDF
    The mechanism of eukaryotic chemotaxis remains unclear despite intensive study. The most frequently described mechanism acts through attractants causing actin polymerization, in turn leading to pseudopod formation and cell movement. We recently proposed an alternative mechanism, supported by several lines of data, in which pseudopods are made by a self-generated cycle. If chemoattractants are present, they modulate the cycle rather than directly causing actin polymerization. The aim of this work is to test the explanatory and predictive powers of such pseudopod-based models to predict the complex behaviour of cells in chemotaxis. We have now tested the effectiveness of this mechanism using a computational model of cell movement and chemotaxis based on pseudopod autocatalysis. The model reproduces a surprisingly wide range of existing data about cell movement and chemotaxis. It simulates cell polarization and persistence without stimuli and selection of accurate pseudopods when chemoattractant gradients are present. It predicts both bias of pseudopod position in low chemoattractant gradients and-unexpectedly-lateral pseudopod initiation in high gradients. To test the predictive ability of the model, we looked for untested and novel predictions. One prediction from the model is that the angle between successive pseudopods at the front of the cell will increase in proportion to the difference between the cell's direction and the direction of the gradient. We measured the angles between pseudopods in chemotaxing Dictyostelium cells under different conditions and found the results agreed with the model extremely well. Our model and data together suggest that in rapidly moving cells like Dictyostelium and neutrophils an intrinsic pseudopod cycle lies at the heart of cell motility. This implies that the mechanism behind chemotaxis relies on modification of intrinsic pseudopod behaviour, more than generation of new pseudopods or actin polymerization by chemoattractant

    The wear of fixed and mobile bearing unicompartmental knee replacements

    Get PDF
    Unicompartmental knee replacements (UKR) are an option for surgical intervention for the treatment of single-compartment osteoarthritis. The aim of this study was to compare the wear of a low-conformity fixed-bearing UKR with a conforming mobile bearing UKR under two kinematic conditions, to investigate the effect of implant design and kinematics on wear performance in a physiological knee wear simulator. Under both sets of kinematic conditions, the relatively low-conforming fixed UKR showed lower wear, compared with the more conforming anterior-posterior sliding mobile bearing. However, it should be noted that differences in materials between the two designs also contribute to the relative wear performance of the bearings. The combined wear of the medial and lateral bearings of the fixed-bearing UKR as a ‘total knee’ were significantly reduced compared with a fixed-bearing total knee replacement studied under the same kinematic condition

    SILAC-based proteomic quantification of chemoattractant-induced cytoskeleton dynamics on a second to minute timescale

    Get PDF
    Cytoskeletal dynamics during cell behaviours ranging from endocytosis and exocytosis to cell division and movement is controlled by a complex network of signalling pathways, the full details of which are as yet unresolved. Here we show that SILAC-based proteomic methods can be used to characterize the rapid chemoattractant-induced dynamic changes in the actin–myosin cytoskeleton and regulatory elements on a proteome-wide scale with a second to minute timescale resolution. This approach provides novel insights in the ensemble kinetics of key cytoskeletal constituents and association of known and novel identified binding proteins. We validate the proteomic data by detailed microscopy-based analysis of in vivo translocation dynamics for key signalling factors. This rapid large-scale proteomic approach may be applied to other situations where highly dynamic changes in complex cellular compartments are expected to play a key role

    The effect of high tibial osteotomy on the results of total knee arthroplasty: a matched case control study

    Get PDF
    BACKGROUND: We performed a matched case control study to assess the effect of prior high tibia valgus producing osteotomy on results and complications of total knee arthroplasty (TKA). METHODS: From 1996 until 2003 356 patients underwent all cemented primary total knee replacement in our institution. Twelve patients with a history of 14 HTO were identified and matched to a control group of 12 patients with 14 primary TKA without previous HTO. The match was made for gender, age, date of surgery, body mass index, aetiology and type of prosthesis. Clinical and radiographic outcome were evaluated after a median duration of follow-up of 3.7 years (minimum, 2.3 years). The SPSS program was used for statistical analyses. RESULTS: The index group had more perioperative blood loss and exposure difficulties with one tibial tuberosity osteotomy and three patients with lateral retinacular releases. No such procedures were needed in the control group. Mid-term HSS, KSS and WOMAC scores were less favourable for the index group, but these differences were not significant. The tibial slope of patients with prior HTO was significantly decreased after this procedure. The tibial posterior inclination angle was corrected during knee replacement but posterior inclination was significantly less compared to the control group. No deep infection or knee component loosening were seen in the group with prior HTO. CONCLUSION: We conclude that TKA after HTO seems to be technically more demanding than a primary knee arthroplasty, but clinical outcome was almost identical to a matched group that had no HTO previously

    Radiolucent lines in low-contact-stress mobile-bearing total knee arthroplasty: a blinded and matched case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low-contact-stress (LCS) mobile-bearing total knee arthroplasty (TKA) (Johnson & Johnson, New Brunswick, NJ; previously: DePuy, Warsawa, USA) provides excellent functional results and wear rates in long-term follow-up analyses. Radiological analysis shows radiolucent lines (RLL) appearing immediately or two years after primary implantation, indicative of poor seat. Investigations proved RLL to be more frequent in uncemented TKA, resulting in a consensus to cement the tibial plateau, but their association with clinical findings and patients discomfort and knee pain is still unknown.</p> <p>Methods</p> <p>553 patients with 566 low-contact-stress (LCS) total knee prostheses were screened for continuous moderate knee pain. We compared tibial stress shielding classified by Ewald in patients suffering from pain with a matched, pain-free control group on blinded X-rays. We hypothesized a positive correlation between pain and radiolucency and higher frequency of such radiolucent lines in the most medial and most lateral zones of the tibial plateau.</p> <p>Results</p> <p>Twenty-eight patients suffered from knee pain in total. Radiolucencies were detected in 27 of these cases and in six out of 28 matched controls without knee pain. We could demonstrate a significant correlation of knee pain and radiolucencies, which appeared significantly more frequently in the outermost zones of the tibial plateau.</p> <p>Conclusion</p> <p>Our findings suggest that radiolucent lines, representing poor implant seat, about the tibial plateau are associated with knee pain in LCS patients. Radiolucencies are observed more often in noncemented LCS, and cementing the tibial plateau might improve implant seat and reduce both radiolucent lines and associated knee pain.</p

    Melanoma cells break down LPA to establish local gradients that drive chemotactic dispersal.

    Get PDF
    The high mortality of melanoma is caused by rapid spread of cancer cells, which occurs unusually early in tumour evolution. Unlike most solid tumours, thickness rather than cytological markers or differentiation is the best guide to metastatic potential. Multiple stimuli that drive melanoma cell migration have been described, but it is not clear which are responsible for invasion, nor if chemotactic gradients exist in real tumours. In a chamber-based assay for melanoma dispersal, we find that cells migrate efficiently away from one another, even in initially homogeneous medium. This dispersal is driven by positive chemotaxis rather than chemorepulsion or contact inhibition. The principal chemoattractant, unexpectedly active across all tumour stages, is the lipid agonist lysophosphatidic acid (LPA) acting through the LPA receptor LPAR1. LPA induces chemotaxis of remarkable accuracy, and is both necessary and sufficient for chemotaxis and invasion in 2-D and 3-D assays. Growth factors, often described as tumour attractants, cause negligible chemotaxis themselves, but potentiate chemotaxis to LPA. Cells rapidly break down LPA present at substantial levels in culture medium and normal skin to generate outward-facing gradients. We measure LPA gradients across the margins of melanomas in vivo, confirming the physiological importance of our results. We conclude that LPA chemotaxis provides a strong drive for melanoma cells to invade outwards. Cells create their own gradients by acting as a sink, breaking down locally present LPA, and thus forming a gradient that is low in the tumour and high in the surrounding areas. The key step is not acquisition of sensitivity to the chemoattractant, but rather the tumour growing to break down enough LPA to form a gradient. Thus the stimulus that drives cell dispersal is not the presence of LPA itself, but the self-generated, outward-directed gradient

    ACL reconstruction with unicondylar replacement in knee with functional instability and osteoarthritis

    Get PDF
    Severe symptomatic osteoarthritis in young and active patients with pre-existing deficiency of the anterior cruciate ligament and severe functionally instability is a difficult subgroup to manage. There is considerable debate regarding management of young patients with isolated unicompartment osteoarthritis and concomitant ACL deficiency. A retrospective analysis of was done in 9 patients with symptomatic osteoarthritis with ACL deficiencies and functional instability that were treated with unicompartment knee arthroplasty and ACL reconstruction between April 2002 and June 2005. The average arc of flexion was 119° (range 85° to 135°) preoperatively and 125° (range 105° to 140°). There were no signs of instability during the follow up of patients. No patients in this group were reoperated. In this small series we have shown that instability can be corrected and pain relieved by this combined procedure

    No differences in in vivo kinematics between six different types of knee prostheses

    Get PDF
    Purpose: The aim of this study was to compare a broad range of total knee prostheses with different design parameters to determine whether in vivo kinematics was consistently related to design. The hypothesis was that there are no clear recognizable differences in in vivo kinematics between different design parameters or prostheses. Methods: At two sites, data were collected by a single observer on 52 knees (49 subjects with rheumatoid arthritis or osteoarthritis). Six different total knee prostheses were used: multi-radius, single-radius, fixed-bearing, mobilebearing, posterior-stabilized, cruciate retaining and cruciate sacrificing. Knee kinematics was recorded using fluoroscopy as the patients performed a step-up motion. Results: There was a significant effect of prosthetic design on all outcome parameters; however, post hoc tests showed that the NexGen group was responsible for 80% of the significant values. The range of knee flexion was much smaller in this group, resulting in smaller anterior-posterior translations and rotations. Conclusion: Despite kinematics being generally consistent with the kinematics intended by their design, there were no clear recognizable differences in in vivo kinematics between different design parameters or prostheses. Hence, the differences in design parameters or prostheses are not distinct enough to have an effect on clinical outcome of patients.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin

    Can a total knee arthroplasty be both rotationally unconstrained and anteroposteriorly stabilised? A pulsed fluoroscopic investigation

    Get PDF
    Objectives: Throughout the 20th Century, it has been postulated that the knee moves on the basis of a four-bar link mechanism composed of the cruciate ligaments, the femur and the tibia. As a consequence, the femur has been thought to roll back with flexion, and total knee arthroplasty (TKA) prostheses have been designed on this basis. Recent work, however, has proposed that at a position of between 0° and 120° the medial femoral condyle does not move anteroposteriorly whereas the lateral femoral condyle tends, but is not obliged, to roll back - a combination of movements which equates to tibial internal/femoral external rotation with flexion. The aim of this paper was to assess if the articular geometry of the GMK Sphere TKA could recreate the natural knee movements in situ/in vivo. Methods: The pattern of knee movement was studied in 15 patients (six male: nine female; one male with bilateral TKAs) with 16 GMK Sphere implants, at a mean age of 66 years (53 to 76) with a mean BMI of 30 kg/m2 (20 to 35). The motions of all 16 knees were observed using pulsed fluoroscopy during a number of weight-bearing and non-weight-bearing static and dynamic activities. Results: During maximally flexed kneeling and lunging activities, the mean tibial internal rotation was 8° (standard deviation (SD) 6). At a mean 112° flexion (SD 16) during lunging, the medial and lateral condyles were a mean of 2 mm (SD 3) and 8 mm (SD 4) posterior to a transverse line passing through the centre of the medial tibial concavity. With a mean flexion of 117° (SD 14) during kneeling, the medial and lateral condyles were a mean of 1 mm (SD 4) anterior and 6 mm (SD 4) posterior to the same line. During dynamic stair and pivoting activities, there was a mean anteroposterior translation of 0 mm to 2 mm of the medial femoral condyle. Backward lateral condylar translation occurred and was linearly related to tibial rotation. Conclusion: The GMK Sphere TKA in our study group shows movements similar in pattern, although reduced in magnitude, to those in recent reports relating to normal knees during several activities. Specifically, little or no translation of the medial femoral condyle was observed during flexion, but there was posterior roll-back of the lateral femoral condyle, equating to tibiofemoral rotation. We conclude that the GMK Sphere is anteroposteriorly stable medially and permits rotation about the medial compartment
    corecore