155 research outputs found

    Sales tax as a means of federal revenue

    Full text link
    This item was digitized by the Internet Archive. Thesis (M.B.A.)--Boston Universit

    Sustainable Transportation for Maine’s Future

    Get PDF
    Maine is dependent on its transportation infrastructure for continued economic strength and growth, particularly on the 22,670 miles of public roads. Maine ranks fourteenth in the nation for the largest number of highway miles traveled annually per capita - 14,912 per year. Maine is highly reliant on its road system because large areas of the State lack transportation alternatives. This means that the current and future condition of the roadways is a major concern. How such a crucial infrastructure will continue to be supported and enhanced financially to meet the growing needs of the State must be considered carefully

    Characterization of β-amyloid peptide precursor processing by the yeast Yap3 and Mkc7 proteases

    Get PDF
    AbstractTwo proteases, denoted β- and γ-secretase, process the β-amyloid peptide precursor (APP) to yield the Aβ peptides involved in Alzheimer's disease. A third protein, α-secretase, cleaves APP near the middle of the Aβ sequence and thus prevents Aβ formation. These enzymes have defied identification. Because of its similarity to the systems of mammalian cells the yeast secretory system has provided important clues for finding mammalian processing enzymes. When expressed in Saccharomyces cerevisiae APP is processed by enzymes that possess the specificity of the α-secretases of multicellular organisms. APP processing by α-secretases occurred in sec1 and sec7 mutants, in which transport to the cell surface or to the vacuole is blocked, but not in sec17 or sec18 mutants, in which transport from the endoplasmic reticulum to the Golgi is blocked. Neutralization of the vacuole by NH4Cl did not block α-secretase action. The time course of processing of a pro-α-factor leader-APP chimera showed that processing by Kex2 protease, a Golgi protease that removes the leader, preceded processing by α-secretase. Deletions of the genes encoding the GPI-linked aspartyl proteases Yap3 and Mkc7 decreased α-secretase activity by 56 and 29%, respectively; whereas, the double deletion decreased the activity by 86%. An altered form of APP-695, in which glutamine replaced Lys-612 at the cleavage site, is cleaved by Yap3 at 5% the rate of the wild-type APP. Mkc7 protease cleaved APP (K612Q) at about 20% the rate of wild-type APP. The simplest interpretation of these results is that Yap3 and Mkc7 proteases are α-secretases which act on APP in the late Golgi. They suggest that GPI-linked aspartyl proteases should be investigated as candidate secretases in mammalian tissues

    Structure of the Bacillus subtilis 70S ribosome reveals the basis for species-specific stalling

    Get PDF
    Ribosomal stalling is used to regulate gene expression and can occur in a species-specific manner. Stalling during translation of the MifM leader peptide regulates expression of the downstream membrane protein biogenesis factor YidC2 (YqjG) in Bacillus subtilis, but not in Escherichia coli. In the absence of structures of Gram-positive bacterial ribosomes, a molecular basis for species-specific stalling has remained unclear. Here we present the structure of a Gram-positive B. subtilis MifM-stalled 70S ribosome at 3.5-3.9 angstrom, revealing a network of interactions between MifM and the ribosomal tunnel, which stabilize a non-productive conformation of the PTC that prevents aminoacyl-tRNA accommodation and thereby induces translational arrest. Complementary genetic analyses identify a single amino acid within ribosomal protein L22 that dictates the species specificity of the stalling event. Such insights expand our understanding of how the synergism between the ribosome and the nascent chain is utilized to modulate the translatome in a species-specific manner

    A combined cryo-EM and molecular dynamics approach reveals the mechanism of ErmBL-mediated translation arrest

    Get PDF
    Nascent polypeptides can induce ribosome stalling, regulating downstream genes. Stalling of ErmBL peptide translation in the presence of the macrolide antibiotic erythromycin leads to resistance in Streptococcus sanguis. To reveal this stalling mechanism we obtained 3.6-angstrom-resolution cryo-EM structures of ErmBL-stalled ribosomes with erythromycin. The nascent peptide adopts an unusual conformation with the C-terminal Asp10 side chain in a previously unseen rotated position. Together with molecular dynamics simulations, the structures indicate that peptide-bond formation is inhibited by displacement of the peptidyl-tRNA A76 ribose from its canonical position, and by non-productive interactions of the A-tRNA Lys11 side chain with the A-site crevice. These two effects combine to perturb peptide-bond formation by increasing the distance between the attacking Lys11 amine and the Asp10 carbonyl carbon. The interplay between drug, peptide and ribosome uncovered here also provides insight into the fundamental mechanism of peptide-bond formation

    Structure of the mammalian antimicrobial peptide Bac7(1-16) bound within the exit tunnel of a bacterial ribosome

    Get PDF
    Proline-rich antimicrobial peptides (PrAMPs) produced as part of the innate immune response of animals, insects and plants represent a vast, untapped resource for the treatment of multidrug-resistant bacterial infections. PrAMPs such as oncocin or bactenecin-7 (Bac7) interact with the bacterial ribosome to inhibit translation, but their supposed specificity as inhibitors of bacterial rather than mammalian protein synthesis remains unclear, despite being key to developing drugs with low toxicity. Here, we present crystal structures of the Thermus thermophilus 70S ribosome in complex with the first 16 residues of mammalian Bac7, as well as the insect-derived PrAMPs metalnikowin I and pyrrhocoricin. The structures reveal that the mammalian Bac7 interacts with a similar region of the ribosome as insect-derived PrAMPs. Consistently, Bac7 and the oncocin derivative Onc112 compete effectively with antibiotics, such as erythromycin, which target the ribosomal exit tunnel. Moreover, we demonstrate that Bac7 allows initiation complex formation but prevents entry into the elongation phase of translation, and show that it inhibits translation on both mammalian and bacterial ribosomes, explaining why this peptide needs to be stored as an inactive pro-peptide. These findings highlight the need to consider the specificity of PrAMP derivatives for the bacterial ribosome in future drug development efforts

    Potential association of LMNA-associated generalized lipodystrophy with juvenile dermatomyositis

    Full text link
    Abstract Background Juvenile dermatomyositis (JDM) is an auto-immune muscle disease which presents with skin manifestations and muscle weakness. At least 10% of the patients with JDM present with acquired lipodystrophy. Laminopathies are caused by mutations in the lamin genes and cover a wide spectrum of diseases including muscular dystrophies and lipodystrophy. The p.T10I LMNA variant is associated with a phenotype of generalized lipodystrophy that has also been called atypical progeroid syndrome. Case presentation A previously healthy female presented with bilateral proximal lower extremity muscle weakness at age 4. She was diagnosed with JDM based on her clinical presentation, laboratory tests and magnetic resonance imaging (MRI). She had subcutaneous fat loss which started in her extremities and progressed to her whole body. At age 7, she had diabetes, hypertriglyceridemia, low leptin levels and low body fat on dual energy X-ray absorptiometry (DEXA) scan, and was diagnosed with acquired generalized lipodystrophy (AGL). Whole exome sequencing (WES) revealed a heterozygous c.29C > T; p.T10I missense pathogenic variant in LMNA, which encodes lamins A and C. Muscle biopsy confirmed JDM rather than muscular dystrophy, showing perifascicular atrophy and perivascular mononuclear cell infiltration. Immunofluroscence of skin fibroblasts confirmed nuclear atypia and fragmentation. Conclusions This is a unique case with p.T10I LMNA variant displaying concurrent JDM and AGL. This co-occurrence raises the intriguing possibility that LMNA, and possibly p.T10I, may have a pathogenic role in not only the occurrence of generalized lipodystrophy, but also juvenile dermatomyositis. Careful phenotypic characterization of additional patients with laminopathies as well as individuals with JDM is warranted.https://deepblue.lib.umich.edu/bitstream/2027.42/142870/1/40842_2018_Article_58.pd
    corecore