72 research outputs found

    Statistical Mechanics Approach to Inverse Problems on Networks

    Get PDF
    Statistical Mechanics has gained a central role in modern Inference and Computer Science. Many optimization and inference problems can be cast in a Statistical Mechanics framework, and various concepts and methods developed in this area of Physics can be very helpful not only in the theoretical analysis, but also constitute valuable tools for solving single instance cases of hard inference and computational tasks. In this work, I address various inverse problems on networks, from models of epidemic spreading to learning in neural networks, and apply a variety of methods which have been developed in the context of Disordered Systems, namely Replica and Cavity methods from the theoretical side, and their algorithmic incarnation, Belief Propagation, to solve hard inverse problems which can be formulated in a Bayesian framework

    Optimal Learning with Excitatory and Inhibitory synapses

    Full text link
    Characterizing the relation between weight structure and input/output statistics is fundamental for understanding the computational capabilities of neural circuits. In this work, I study the problem of storing associations between analog signals in the presence of correlations, using methods from statistical mechanics. I characterize the typical learning performance in terms of the power spectrum of random input and output processes. I show that optimal synaptic weight configurations reach a capacity of 0.5 for any fraction of excitatory to inhibitory weights and have a peculiar synaptic distribution with a finite fraction of silent synapses. I further provide a link between typical learning performance and principal components analysis in single cases. These results may shed light on the synaptic profile of brain circuits, such as cerebellar structures, that are thought to engage in processing time-dependent signals and performing on-line prediction.Comment: 16 pages, 5 figure

    Inference of causality in epidemics on temporal contact networks

    Get PDF
    Investigating into the past history of an epidemic outbreak is a paramount problem in epidemiology. Based on observations about the state of individuals, on the knowledge of the network of contacts and on a mathematical model for the epidemic process, the problem consists in describing some features of the posterior distribution of unobserved past events, such as the source, potential transmissions, and undetected positive cases. Several methods have been proposed for the study of these inference problems on discrete-time, synchronous epidemic models on networks, including naive Bayes, centrality measures, accelerated Monte-Carlo approaches and Belief Propagation. However, most traced real networks consist of short-time contacts on continuous time. A possibility that has been adopted is to discretize time line into identical intervals, a method that becomes more and more precise as the length of the intervals vanishes. Unfortunately, the computational time of the inference methods increase with the number of intervals, turning a sufficiently precise inference procedure often impractical. We show here an extension of the Belief Propagation method that is able to deal with a model of continuous-time events, without resorting to time discretization. We also investigate the effect of time discretization on the quality of the inference

    Training dynamically balanced excitatory-inhibitory networks

    Full text link
    The construction of biologically plausible models of neural circuits is crucial for understanding the computational properties of the nervous system. Constructing functional networks composed of separate excitatory and inhibitory neurons obeying Dale's law presents a number of challenges. We show how a target-based approach, when combined with a fast online constrained optimization technique, is capable of building functional models of rate and spiking recurrent neural networks in which excitation and inhibition are balanced. Balanced networks can be trained to produce complicated temporal patterns and to solve input-output tasks while retaining biologically desirable features such as Dale's law and response variability.Comment: 12 pages, 7 figure

    Neural networks trained with SGD learn distributions of increasing complexity

    Full text link
    The ability of deep neural networks to generalise well even when they interpolate their training data has been explained using various "simplicity biases". These theories postulate that neural networks avoid overfitting by first learning simple functions, say a linear classifier, before learning more complex, non-linear functions. Meanwhile, data structure is also recognised as a key ingredient for good generalisation, yet its role in simplicity biases is not yet understood. Here, we show that neural networks trained using stochastic gradient descent initially classify their inputs using lower-order input statistics, like mean and covariance, and exploit higher-order statistics only later during training. We first demonstrate this distributional simplicity bias (DSB) in a solvable model of a neural network trained on synthetic data. We empirically demonstrate DSB in a range of deep convolutional networks and visual transformers trained on CIFAR10, and show that it even holds in networks pre-trained on ImageNet. We discuss the relation of DSB to other simplicity biases and consider its implications for the principle of Gaussian universality in learning.Comment: Source code available at https://github.com/sgoldt/dist_inc_com

    Discovering Neuronal Cell Types and Their Gene Expression Profiles Using a Spatial Point Process Mixture Model

    Full text link
    Cataloging the neuronal cell types that comprise circuitry of individual brain regions is a major goal of modern neuroscience and the BRAIN initiative. Single-cell RNA sequencing can now be used to measure the gene expression profiles of individual neurons and to categorize neurons based on their gene expression profiles. While the single-cell techniques are extremely powerful and hold great promise, they are currently still labor intensive, have a high cost per cell, and, most importantly, do not provide information on spatial distribution of cell types in specific regions of the brain. We propose a complementary approach that uses computational methods to infer the cell types and their gene expression profiles through analysis of brain-wide single-cell resolution in situ hybridization (ISH) imagery contained in the Allen Brain Atlas (ABA). We measure the spatial distribution of neurons labeled in the ISH image for each gene and model it as a spatial point process mixture, whose mixture weights are given by the cell types which express that gene. By fitting a point process mixture model jointly to the ISH images, we infer both the spatial point process distribution for each cell type and their gene expression profile. We validate our predictions of cell type-specific gene expression profiles using single cell RNA sequencing data, recently published for the mouse somatosensory cortex. Jointly with the gene expression profiles, cell features such as cell size, orientation, intensity and local density level are inferred per cell type

    Freestanding piezoelectric rings for high efficiency energy harvesting at low frequency

    Get PDF
    Energy harvesting at low frequency is a challenge for microelectromechanical systems. In this work we present a piezoelectric vibration energy harvester based on freestanding molybdenum (Mo) and aluminum nitride (AlN) ring-microelectromechanical-system (RMEMS) resonators. The freestanding ring layout has high energy efficiency due to the additional torsional modes which are absent in planar cantilevers systems. The realized RMEMS prototypes show very low resonance frequencies without adding proof masses, providing the record high power density of 30.20 μW mm−3 at 64 Hz with an acceleration of 2g. The power density refers to the volume of the vibrating RMEMS layout
    • …
    corecore