183 research outputs found
Effect of Metformin Added to Insulin on Glycemic Control Among Overweight/Obese Adolescents With Type 1 Diabetes: A Randomized Clinical Trial
Importance Previous studies assessing the effect of metformin on glycemic control in adolescents with type 1 diabetes have produced inconclusive results.
Objective To assess the efficacy and safety of metformin as an adjunct to insulin in treating overweight adolescents with type 1 diabetes.
Design, Setting, and Participants Multicenter (26 pediatric endocrinology clinics), double-blind, placebo-controlled randomized clinical trial involving 140 adolescents aged 12.1 to 19.6 years (mean [SD] 15.3 [1.7] years) with mean type 1 diabetes duration 7.0 (3.3) years, mean body mass index (BMI) 94th (4) percentile, mean total daily insulin 1.1 (0.2) U/kg, and mean HbA1c 8.8% (0.7%).
Interventions Randomization to receive metformin (n = 71) (≤2000 mg/d) or placebo (n = 69).
Main Outcomes and Measures Primary outcome was change in HbA1c from baseline to 26 weeks adjusted for baseline HbA1c. Secondary outcomes included change in blinded continuous glucose monitor indices, total daily insulin, BMI, waist circumference, body composition, blood pressure, and lipids.
Results Between October 2013 and February 2014, 140 participants were enrolled. Baseline HbA1c was 8.8% in each group. At 13-week follow-up, reduction in HbA1c was greater with metformin (−0.2%) than placebo (0.1%; mean difference, −0.3% [95% CI, −0.6% to 0.0%]; P = .02). However, this differential effect was not sustained at 26-week follow up when mean change in HbA1c from baseline was 0.2% in each group (mean difference, 0% [95% CI, −0.3% to 0.3%]; P = .92). At 26-week follow-up, total daily insulin per kg of body weight was reduced by at least 25% from baseline among 23% (16) of participants in the metformin group vs 1% (1) of participants in the placebo group (mean difference, 21% [95% CI, 11% to 32%]; P = .003), and 24% (17) of participants in the metformin group and 7% (5) of participants in the placebo group had a reduction in BMI z score of 10% or greater from baseline to 26 weeks (mean difference, 17% [95% CI, 5% to 29%]; P = .01). Gastrointestinal adverse events were reported by more participants in the metformin group than in the placebo group (mean difference, 36% [95% CI, 19% to 51%]; P < .001).
Conclusions and Relevance Among overweight adolescents with type 1 diabetes, the addition of metformin to insulin did not improve glycemic control after 6 months. Of multiple secondary end points, findings favored metformin only for insulin dose and measures of adiposity; conversely, use of metformin resulted in an increased risk for gastrointestinal adverse events. These results do not support prescribing metformin to overweight adolescents with type 1 diabetes to improve glycemic control
Excess BMI in childhood:A modifiable risk factor for type 1 diabetes development?
OBJECTIVE: We aimed to determine the effect of elevated BMI over time on the progression to type 1 diabetes in youth. RESEARCH DESIGN AND METHODS: We studied 1,117 children in the TrialNet Pathway to Prevention cohort (autoantibodypositive relatives of patients with type 1 diabetes). Longitudinally accumulated BMI above the 85th age- and sex-adjusted percentile generated a cumulative excess BMI (ceBMI) index. Recursive partitioning and multivariate analyses yielded sex and age-specific ceBMI thresholds for greatest type 1 diabetes risk. RESULTS: Higher ceBMI conferred significantly greater risk of progressing to type 1 diabetes. The increased diabetes risk occurred at lower ceBMI values in children <12 years of age compared with older subjects and in females versus males. CONCLUSIONS: Elevated BMI is associated with increased risk of diabetes progression in pediatric autoantibody-positive relatives, but the effect varies by sex and age.</p
Metformin Improves Peripheral Insulin Sensitivity in Youth With Type 1 Diabetes
Context: Type 1 diabetes in adolescence is characterized by insulin deficiency and insulin resistance (IR), both thought to increase cardiovascular disease risk. We previously demonstrated that adolescents with type 1 diabetes have adipose, hepatic, and muscle IR, and that metformin lowers daily insulin dose, suggesting improved IR. However, whether metformin improves IR in muscle, hepatic, or adipose tissues in type 1 diabetes was unknown.
Objective: Measure peripheral, hepatic, and adipose insulin sensitivity before and after metformin or placebo therapy in youth with obesity with type 1 diabetes.
Design: Double-blind, placebo-controlled clinical trial.
Setting: Multi-center at eight sites of the T1D Exchange Clinic Network.
Participants: A subset of 12- to 19-year-olds with type 1 diabetes (inclusion criteria: body mass index ≥85th percentile, HbA1c 7.5% to 9.9%, insulin dosing ≥0.8 U/kg/d) from a larger trial (NCT02045290) were enrolled.
Intervention: Participants were randomized to 3 months of metformin (N = 19) or placebo (N = 18) and underwent a three-phase hyperinsulinemic euglycemic clamp with glucose and glycerol isotope tracers to assess tissue-specific IR before and after treatment.
Main outcome measures: Peripheral insulin sensitivity, endogenous glucose release, rate of lipolysis.
Results: Between-group differences in change in insulin sensitivity favored metformin regarding whole-body IR [change in glucose infusion rate 1.3 (0.1, 2.4) mg/kg/min, P = 0.03] and peripheral IR [change in metabolic clearance rate 0.923 (-0.002, 1.867) dL/kg/min, P = 0.05]. Metformin did not impact insulin suppression of endogenous glucose release (P = 0.12). Adipose IR was not assessable with traditional methods in this highly IR population.
Conclusions: Metformin appears to improve whole-body and peripheral IR in youth who are overweight/obese with type 1 diabetes
VI Curso Internacional de Endocrinología, Diabetes y Metabolismo
Diabetes en niños y adolescentes - no es solo diabetes tipo 1 o tipo 2
Ingrid Libman, Md, Phd
La diabetes mellitus (DM) en la infancia y adolescencia constituye un espectro. Si bien la DM tipo 2 (DM2) es la forma más frecuente en la población en general, la DM tipo 1 (DM1) constituye el tipo más común en la niñez y juventud. Más del 50% de los enfermos afectados con DM1 son diagnosticados durante los primeros años de vida. En la mayoría de los países occidentales, la DM1 constituye más del 90% de los casos diagnosticados en la infancia y adolescencia. La DM2 era considerada hasta hace poco tiempo una enfermedad propia de la edad adulta. Si bien es cierto que continúa siendo más prevalente en este grupo etario, existe evidencia de su aparición con mayor frecuencia en la adolescencia y juventud, en estrecha asociación con el aumento en la prevalencia de la obesidad. La etiología de la DM2 es multifactorial, incluyendo factores genéticos y ambientales, resultando de la combinación de un aumento de la resistencia a la insulina en los tejidos periféricos asociado al incremento del tejido adiposo visceral y a una disfunción progresiva de las células ?.
Por otra parte, una forma con características de ambos tipos, conocida como diabetes “doble” o “híbrida” ha sido descrita más recientemente, Estos jóvenes se presentan con un fenotipo que incluye manifestaciones de la DM2 (obesidad, presencia de acantosis nigricans) al mismo tiempo que muestran evidencia de autoinmunidad dirigida a las células ?, ya sea la presencia de anticuerpos o una respuesta anormal de los linfocitos a antígenos celulares de los islotes, indicadores de DM1
Excess BMI Accelerates Islet Autoimmunity in Older Children and Adolescents
Objective: Sustained excess BMI increases the risk of type 1 diabetes (T1D) in autoantibody-positive relatives without diabetes of patients. We tested whether elevated BMI also accelerates the progression of islet autoimmunity before T1D diagnosis.
Research design and methods: We studied 706 single autoantibody-positive pediatric TrialNet participants (ages 1.6-18.6 years at baseline). Cumulative excess BMI (ceBMI) was calculated for each participant based on longitudinally accumulated BMI ≥85th age- and sex-adjusted percentile. Recursive partitioning analysis and multivariable modeling defined the age cut point differentiating the risk for progression to multiple positive autoantibodies.
Results: At baseline, 175 children (25%) had a BMI ≥85th percentile. ceBMI range was -9.2 to 15.6 kg/m2 (median -1.91), with ceBMI ≥0 kg/m2 corresponding to persistently elevated BMI ≥85th percentile. Younger age increased the progression to multiple autoantibodies, with age cutoff of 9 years defined by recursive partitioning analysis. Although ceBMI was not significantly associated with progression from single to multiple autoantibodies overall, there was an interaction with ceBMI ≥0 kg/m2, age, and HLA (P = 0.009). Among children ≥9 years old without HLA DR3-DQ2 and DR4-DQ8, ceBMI ≥0 kg/m2 increased the rate of progression from single to multiple positive autoantibodies (hazard ratio 7.32, P = 0.004) and conferred a risk similar to that in those with T1D-associated HLA haplotypes. In participants <9 years old, the effect of ceBMI on progression to multiple autoantibodies was not significant regardless of HLA type.
Conclusions: These data support that elevated BMI may exacerbate islet autoimmunity prior to clinical T1D, particularly in children with lower risk based on age and HLA. Interventions to maintain normal BMI may prevent or delay the progression of islet autoimmunity
Early and late C-peptide responses during oral glucose tolerance testing are oppositely predictive of type 1 diabetes in autoantibody-positive individuals
We examined whether the timing of the C-peptide response during an oral glucose tolerance test (OGTT) in relatives of patients with type 1 diabetes (T1D) is predictive of disease onset. We examined baseline 2-h OGTTs from 670 relatives participating in the Diabetes Prevention Trial-Type 1 (age: 13.8 ± 9.6 years; body mass index z score: 0.3 ± 1.1; 56% male) using univariate regression models. T1D risk increased with lower early C-peptide responses (30–0 min) (χ2 = 28.8, P < 0.001), and higher late C-peptide responses (120–60 min) (χ2 = 23.3, P < 0.001). When both responses were included in a proportional hazards model, they remained independently and oppositely associated with T1D, with a stronger overall association for the combined model than either response alone (χ2 = 41.1; P < 0.001). Using receiver operating characteristic curve analysis, the combined early and late C-peptide response was more accurately predictive of T1D than area under the curve C-peptide (P = 0.005). Our findings demonstrate that lower early and higher late C-peptide responses serve as indicators of increased T1D risk
Characteristics of slow progression to diabetes in multiple islet autoantibody-positive individuals from five longitudinal cohorts:the SNAIL study
Aims/hypothesis
Multiple islet autoimmunity increases risk of diabetes, but not all individuals positive for two or more islet autoantibodies progress to disease within a decade. Major islet autoantibodies recognise insulin (IAA), GAD (GADA), islet antigen-2 (IA-2A) and zinc transporter 8 (ZnT8A). Here we describe the baseline characteristics of a unique cohort of ‘slow progressors’ (n = 132) who were positive for multiple islet autoantibodies (IAA, GADA, IA-2A or ZnT8A) but did not progress to diabetes within 10 years.
Methods
Individuals were identified from five studies (BABYDIAB, Germany; Diabetes Autoimmunity Study in the Young [DAISY], USA; All Babies in Southeast Sweden [ABIS], Sweden; Bart’s Oxford Family Study [BOX], UK and the Pittsburgh Family Study, USA). Multiple islet autoantibody characteristics were determined using harmonised assays where possible. HLA class II risk was compared between slow progressors and rapid progressors (n = 348 diagnosed <5 years old from BOX) using the χ2 test.
Results
In the first available samples with detectable multiple antibodies, the most frequent autoantibodies were GADA (92%), followed by ZnT8A (62%), IAA (59%) and IA-2A (41%). High risk HLA class II genotypes were less frequent in slow (28%) than rapid progressors (42%, p = 0.011), but only two slow progressors carried the protective HLA DQ6 allele.
Conclusion
No distinguishing characteristics of slow progressors at first detection of multiple antibodies have yet been identified. Continued investigation of these individuals may provide insights into slow progression that will inform future efforts to slow or prevent progression to clinical diabetes
Islet autoantibodies as precision diagnostic tools to characterize heterogeneity in type 1 diabetes: a systematic review
Background
Islet autoantibodies form the foundation for type 1 diabetes (T1D) diagnosis and staging, but heterogeneity exists in T1D development and presentation. We hypothesized that autoantibodies can identify heterogeneity before, at, and after T1D diagnosis, and in response to disease-modifying therapies.
Methods
We systematically reviewed PubMed and EMBASE databases (6/14/2022) assessing 10 years of original research examining relationships between autoantibodies and heterogeneity before, at, after diagnosis, and in response to disease-modifying therapies in individuals at-risk or within 1 year of T1D diagnosis. A critical appraisal checklist tool for cohort studies was modified and used for risk of bias assessment.
Results
Here we show that 152 studies that met extraction criteria most commonly characterized heterogeneity before diagnosis (91/152). Autoantibody type/target was most frequently examined, followed by autoantibody number. Recurring themes included correlations of autoantibody number, type, and titers with progression, differing phenotypes based on order of autoantibody seroconversion, and interactions with age and genetics. Only 44% specifically described autoantibody assay standardization program participation.
Conclusions
Current evidence most strongly supports the application of autoantibody features to more precisely define T1D before diagnosis. Our findings support continued use of pre-clinical staging paradigms based on autoantibody number and suggest that additional autoantibody features, particularly in relation to age and genetic risk, could offer more precise stratification. To improve reproducibility and applicability of autoantibody-based precision medicine in T1D, we propose a methods checklist for islet autoantibody-based manuscripts which includes use of precision medicine MeSH terms and participation in autoantibody standardization workshops.publishedVersio
Precision treatment of beta-cell monogenic diabetes: a systematic review
Background
Beta-cell monogenic forms of diabetes have strong support for precision medicine. We systematically analyzed evidence for precision treatments for GCK-related hyperglycemia, HNF1A-, HNF4A- and HNF1B-diabetes, and mitochondrial diabetes (MD) due to m.3243 A > G variant, 6q24-transient neonatal diabetes mellitus (TND) and SLC19A2-diabetes.
Methods
The search of PubMed, MEDLINE, and Embase for individual and group level data for glycemic outcomes using inclusion (English, original articles written after 1992) and exclusion (VUS, multiple diabetes types, absent/aggregated treatment effect measures) criteria. The risk of bias was assessed using NHLBI study-quality assessment tools. Data extracted from Covidence were summarized and presented as descriptive statistics in tables and text.
Results
There are 146 studies included, with only six being experimental studies. For GCK-related hyperglycemia, the six studies (35 individuals) assessing therapy discontinuation show no HbA1c deterioration. A randomized trial (18 individuals per group) shows that sulfonylureas (SU) were more effective in HNF1A-diabetes than in type 2 diabetes. Cohort and case studies support SU’s effectiveness in lowering HbA1c. Two cross-over trials (each with 15–16 individuals) suggest glinides and GLP-1 receptor agonists might be used in place of SU. Evidence for HNF4A-diabetes is limited. Most reported patients with HNF1B-diabetes (N = 293) and MD (N = 233) are on insulin without treatment studies. Limited data support oral agents after relapse in 6q24-TND and for thiamine improving glycemic control and reducing/eliminating insulin requirement in SLC19A2-diabetes.
Conclusion
There is limited evidence, and with moderate or serious risk of bias, to guide monogenic diabetes treatment. Further evidence is needed to examine the optimum treatment in monogenic subtypes.publishedVersio
Effective interventions in preventing gestational diabetes mellitus: A systematic review and meta-analysis
Background: Lifestyle choices, metformin, and dietary supplements may prevent GDM, but the effect of intervention characteristics has not been identified. This review evaluated intervention characteristics to inform the implementation of GDM prevention interventions.
Methods: Ovid, MEDLINE/PubMed, and EMBASE databases were searched. The Template for Intervention Description and Replication (TIDieR) framework was used to examine intervention characteristics (who, what, when, where, and how). Subgroup analysis was performed by intervention characteristics.
Results: 116 studies involving 40,940 participants are included. Group-based physical activity interventions (RR 0.66; 95% CI 0.46, 0.95) reduce the incidence of GDM compared with individual or mixed (individual and group) delivery format (subgroup p-value = 0.04). Physical activity interventions delivered at healthcare facilities reduce the risk of GDM (RR 0.59; 95% CI 0.49, 0.72) compared with home-based interventions (subgroup p-value = 0.03). No other intervention characteristics impact the effectiveness of all other interventions.
Conclusions: Dietary, physical activity, diet plus physical activity, metformin, and myoinositol interventions reduce the incidence of GDM compared with control interventions. Group and healthcare facility-based physical activity interventions show better effectiveness in preventing GDM than individual and community-based interventions. Other intervention characteristics (e.g. utilization of e-health) don’t impact the effectiveness of lifestyle interventions, and thus, interventions may require consideration of the local context.publishedVersio
- …
