37 research outputs found

    Deletion of Jun Proteins in Adult Oligodendrocytes Does Not Perturb Cell Survival, or Myelin Maintenance In Vivo

    Get PDF
    Oligodendrocytes, the myelin-forming glial cells of the central nervous system (CNS),are fundamental players in rapid impulse conduction and normal axonal functions. JunB and c-Jun are DNA-binding components of the AP-1 transcription factor, which is known to regulate different processes such as proliferation, differentiation, stress responses and death in several cell types, including cultured oligodendrocyte/lineage cells. By selectively inactivating Jun B and c-Jun in myelinating oligodendrocytes in vivo, we generated mutant mice that developed normally, and within more than 12 months showed normal ageing and survival rates. In the adult CNS, absence of JunB and c-Jun from mature oligodendrocytes caused low-grade glial activation without overt signs of demyelination or secondary leukocyte infiltration into the brain. Even after exposure to toxic or autoimmune oligodendrocyte insults, signs of altered oligodendrocyte viability were mild and detectable only upon cuprizone treatment. We conclude that JunB and c-Jun expression in post-mitotic oligodendrocytes is mostly dispensable for the maintainance of white matter tracts throughout adult life, even under demyelinating conditions

    Astrocyte Depletion Impairs Redox Homeostasis and Triggers Neuronal Loss in the Adult CNS

    Get PDF
    Although the importance of reactive astrocytes during CNS pathology is well established, the function of astroglia in adult CNS homeostasis is less well understood. With the use of conditional, astrocyte-restricted protein synthesis termination, we found that selective paralysis of GFAP(+) astrocytes in vivo led to rapid neuronal cell loss and severe motor deficits. This occurred while structural astroglial support still persisted and in the absence of any major microvascular damage. Whereas loss of astrocyte function did lead to microglial activation, this had no impact on the neuronal loss and clinical decline. Neuronal injury was caused by oxidative stress resulting from the reduced redox scavenging capability of dysfunctional astrocytes and could be prevented by the in vivo treatment with scavengers of reactive oxygen and nitrogen species (ROS/RNS). Our results suggest that the subpopulation of GFAP(+) astrocytes maintain neuronal health by controlling redox homeostasis in the adult CNS

    Causes of death and comorbidities in hospitalized patients with COVID-19

    Get PDF
    Infection by the new corona virus strain SARS-CoV-2 and its related syndrome COVID-19 has been associated with more than two million deaths worldwide. Patients of higher age and with preexisting chronic health conditions are at an increased risk of fatal disease outcome. However, detailed information on causes of death and the contribution of pre-existing health conditions to death yet is missing, which can be reliably established by autopsy only. We performed full body autopsies on 26 patients that had died after SARS-CoV-2 infection and COVID-19 at the Charite University Hospital Berlin, Germany, or at associated teaching hospitals. We systematically evaluated causes of death and pre-existing health conditions. Additionally, clinical records and death certificates were evaluated. We report findings on causes of death and comorbidities of 26 decedents that had clinically presented with severe COVID-19. We found that septic shock and multi organ failure was the most common immediate cause of death, often due to suppurative pulmonary infection. Respiratory failure due to diffuse alveolar damage presented as immediate cause of death in fewer cases. Several comorbidities, such as hypertension, ischemic heart disease, and obesity were present in the vast majority of patients. Our findings reveal that causes of death were directly related to COVID-19 in the majority of decedents, while they appear not to be an immediate result of preexisting health conditions and comorbidities. We therefore suggest that the majority of patients had died of COVID-19 with only contributory implications of preexisting health conditions to the mechanism of death

    IGF1R expression by adult oligodendrocytes is not required in the steady-state but supports neuroinflammation.

    Get PDF
    In the central nervous system (CNS), insulin-like growth factor 1 (IGF-1) regulates myelination by oligodendrocyte (ODC) precursor cells and shows anti-apoptotic properties in neuronal cells in different in vitro and in vivo systems. Previous work also suggests that IGF-1 protects ODCs from cell death and enhances remyelination in models of toxin-induced and autoimmune demyelination. However, since evidence remains controversial, the therapeutic potential of IGF-1 in demyelinating CNS conditions is unclear. To finally shed light on the function of IGF1-signaling for ODCs, we deleted insulin-like growth factor 1 receptor (IGF1R) specifically in mature ODCs of the mouse. We found that ODC survival and myelin status were unaffected by the absence of IGF1R until 15 months of age, indicating that IGF-1 signaling does not play a major role in post-mitotic ODCs during homeostasis. Notably, the absence of IGF1R did neither affect ODC survival nor myelin status upon cuprizone intoxication or induction of experimental autoimmune encephalomyelitis (EAE), models for toxic and autoimmune demyelination, respectively. Surprisingly, however, the absence of IGF1R from ODCs protected against clinical neuroinflammation in the EAE model. Together, our data indicate that IGF-1 signaling is not required for the function and survival of mature ODCs in steady-state and disease

    Identification and functional characterization of pVHL-dependent cell surface proteins in renal cell carcinoma

    Get PDF
    The identification of cell surface accessible biomarkers enabling diagnosis, disease monitoring, and treatment of renal cell carcinoma (RCC) is as challenging as the biology and progression of RCC is unpredictable. A hallmark of most RCC is the loss-of-function of the von Hippel-Lindau (pVHL) protein by mutation of its gene (VHL). Using the cell surface capturing (CSC) technology, we screened and identified cell surface N-glycoproteins in pVHL-negative and positive 786-O cells. One hundred six cell surface N-glycoproteins were identified. Stable isotope labeling with amino acids in cell culture-based quantification of the CSC screen revealed 23 N-glycoproteins whose abundance seemed to change in a pVHL-dependent manner. Targeted validation experiments using transcriptional profiling of primary RCC samples revealed that nine glycoproteins, including CD10 and AXL, could be directly linked to pVHL-mediated transcriptional regulation. Subsequent human tumor tissue analysis of these cell surface candidate markers showed a correlation between epithelial AXL expression and aggressive tumor phenotype, indicating that pVHL-dependent regulation of glycoproteins may influence the biologic behavior of RCC. Functional characterization of the metalloprotease CD10 in cell invasion assays demonstrated a diminished penetrating behavior of pVHL-negative 786-O cells on treatment with the CD10-specific inhibitor thiorphan. Our proteomic surfaceome screening approach in combination with transcriptional profiling and functional validation suggests pVHL-dependent cell surface glycoproteins as potential diagnostic markers for therapeutic targeting and RCC patient monitoring

    Development of central nervous system metastases as a first site of metastatic disease in breast cancer patients treated in the neoadjuvant trials GeparQuinto and GeparSixto

    Get PDF
    Background: The incidence of central nervous system (CNS) metastases in breast cancer patients is rising and has become a major clinical challenge. Only few data are published concerning risk factors for the development of CNS metastases as a first site of metastatic disease in breast cancer patients. Moreover, the incidence of CNS metastases after modern neoadjuvant treatment is not clear. Methods: We analyzed clinical factors associated with the occurrence of CNS metastases as the first site of metastatic disease in breast cancer patients after neoadjuvant treatment in the trials GeparQuinto and GeparSixto (n = 3160) where patients received targeted treatment in addition to taxane and anthracycline-based chemotherapy. Results: After a median follow-up of 61 months, 108 (3%) of a total of 3160 patients developed CNS metastases as the first site of recurrence and 411 (13%) patients had metastatic disease outside the CNS. Thirty-six patients (1%) developed both CNS metastases and other distant metastases as the first site of metastatic disease. Regarding subtypes of the primary tumor, 1% of luminal A-like (11/954), 2% of luminal B-like (7/381), 4% of HER2-positive (34/809), and 6% of triple-negative patients (56/1008) developed CNS metastases as the first site of metastatic disease. In multivariate analysis, risk factors for the development of CNS metastases were larger tumor size (cT3–4; HR 1.63, 95% CI 1.08–2.46, p = 0.021), node-positive disease (HR 2.57, 95% CI 1.64–4.04, p < 0.001), no pCR after neoadjuvant chemotherapy (HR 2.29, 95% CI 1.32–3.97, p = 0.003), and HER2-positive (HR 3.80, 95% CI 1.89–7.64, p < 0.001) or triple-negative subtype (HR 6.38, 95% CI 3.28–12.44, p < 0.001). Conclusions: Especially patients with HER2-positive and triple-negative tumors are at risk of developing CNS metastases despite effective systemic treatment. A better understanding of the underlying mechanisms is required in order to develop potential preventive strategies

    Homogeneous MGMT Immunoreactivity Correlates with an Unmethylated MGMT Promoter Status in Brain Metastases of Various Solid Tumors

    Get PDF
    The O6-methylguanine-methyltransferase (MGMT) promoter methylation status is a predictive parameter for the response of malignant gliomas to alkylating agents such as temozolomide. First clinical reports on treating brain metastases with temozolomide describe varying effects. This may be due to the fact that MGMT promoter methylation of brain metastases has not yet been explored in depth. Therefore, we assessed MGMT promoter methylation of various brain metastases including those derived from lung (n = 91), breast (n = 72) kidney (n = 49) and from malignant melanomas (n = 113) by methylation-specific polymerase chain reaction (MS-PCR) and MGMT immunoreactivity. Fifty-nine of 199 brain metastases (29.6%) revealed a methylated MGMT promoter. The methylation rate was the highest in brain metastases derived from lung carcinomas (46.5%) followed by those from breast carcinoma (28.8%), malignant melanoma (24.7%) and from renal carcinoma (20%). A significant correlation of homogeneous MGMT-immunoreactivity (>95% MGMT positive tumor cells) and an unmethylated MGMT promoter was found. Promoter methylation was detected in 26 of 61 (43%) tumors lacking MGMT immunoreactivity, in 17 of 63 (27%) metastases with heterogeneous MGMT expression, but only in 5 of 54 brain metastases (9%) showing a homogeneous MGMT immunoreactivity. Our results demonstrate that a significant number of brain metastases reveal a methylated MGMT-promoter. Based on an obvious correlation between homogeneous MGMT immunoreactivity and unmethylated MGMT promoter, we hypothesize that immunohistochemistry for MGMT may be a helpful diagnostic tool to identify those tumors that probably will not benefit from the use of alkylating agents. The discrepancy between promoter methylation and a lack of MGMT immunoreactivity argues for assessing MGMT promoter methylation both by immunohistochemical as well as by molecular approaches for diagnostic purposes

    Tissue-based evaluation of biomarker: RCCma, MGMT, CXCR4 and HER2

    No full text
    Der Begriff „personalisierte Medizin“ ist ein Schlagwort der heutigen Medizin. In der Tumorforschung und –Therapie geht es darum, individuelle tumorbiologische Merkmale zu erkennen und zu definieren, um daraus Erkenntnisse für die Diagnostik, Prognose und/oder einer Therapiestrategie zu gewinnen. Die Pathologie kann dabei als Schnittstelle zwischen Grundlagenforschung und Klinik fungieren. Wie wir in den vorgestellten Arbeiten aufzeigten, sind gewebebasierte Untersuchungen wie die Immunhistologie ein hilfreiches Werkzeug, um Biomarker-Hypothesen an Tumormaterial zu überprüfen. So konnten wir zeigen, dass der RCCma wertvolle Zusatzinformationen in der Differentialdiagnose metastasiertes helllzelliges Nierenzellkarzinom versus Hämangioblastom im ZNS liefert. Des Weiteren identifizierten wir in einem signifikanten Anteil von Hirnmetastasen solider Tumoren einen methylierten MGMT-Promotor als mögliche Basis zur Prädiktion eines Benefits mit alkylierenden Chemotherapeutika wie Temozolomid. Wir konnten zeigen, dass der Chemokinrezeptor CXCR4 eine tumorbiologische Relevanz in Magen- und kolorektalen Karzinomen hat. Insbesondere die in beiden Tumorentitäten augenfällige vaskuläre Expression könnte auf einen möglichen therapeutischen Angriffspunkt im Sinne einer Antiangiogenese hinweisen. In unseren Untersuchungen zum HER2-Status im kolorektalen Karzinom wiesen nur 1.6% der Fälle eine HER2-Positivität und somit die Grundlage für eine potentielle anti-HER2-Therapie auf. Da diese aber signifikant mit fortgeschrittenen, nodalpositiven Karzinomen assoziiert war, erachten wir gerade diese Subgruppe als testenswert. Der Weg eines Biomarkers von der Grundlagenforschung in die klinische Anwendung ist ein langer. Dafür ist eine verstärkte interdisziplinäre Zusammenarbeit für die Zukunft unabdingbar. Die Pathologie wird dabei eine zentrale Rolle spielen.The term "personalized medicine" is a keyword of modern medicine. In translational tumor research, one aim is to identify specific biomarker of an individual tumor, which are of diagnostic, prognostic or predictive impact, therefore guiding further therapy decisions. Using tissue-based methods, pathologists may help to translate basic science findings in daily routine. The tissue microarray technique is a perfect tool to test biomarker hypotheses in large tumor cohorts in a fast and cost-saving way. By applying this method, we could show that RCCma is a useful additional marker to differentiate central nervous system haemangioblastoma from brain metastases of renal cell carcinoma. In a further analysis, we identified a methylated MGMT-promotor in a relevant percentage of brain metastases of solid tumors. As shown for glioblastoma multiforme, this could be the rationale to test the predictive impact of MGMT for a benefit of alkylating drugs in brain metastases. Next, we could show that the chemokine receptor CXCR4 is of biological relevance in gastric and colorectal carcinoma. Especially the vascular staining pattern indicates a role in neo-angiogenesis, therefore suggesting a possible therapeutic target for anti-angiogenic strategies. We further tested the HER2-status in colorectal carcinomas. Although the overall rate of HER2-positivity was low (1.6 %), HER2-positivity was associated with nodal- positive colorectal carcinoma, suggesting an additional therapeutic option in this high-risk group. Translational research needs by definition an interdisciplinary approach. Pathologists will play an increasingly important role
    corecore