94 research outputs found

    Reactive Oxygen Species Are Key Mediators of Demyelination in Canine Distemper Leukoencephalitis but not in Theiler’s Murine Encephalomyelitis

    Get PDF
    (1) Background: Canine distemper virus (CDV)-induced demyelinating leukoencephalitis (CDV-DL) in dogs and Theiler’s murine encephalomyelitis (TME) virus (TMEV)-induced demyelinating leukomyelitis (TMEV-DL) are virus-induced demyelinating conditions mimicking Multiple Sclerosis (MS). Reactive oxygen species (ROS) can induce the degradation of lipids and nucleic acids to characteristic metabolites such as oxidized lipids, malondialdehyde, and 8-hydroxyguanosine. The hypothesis of this study is that ROS are key eector molecules in the pathogenesis of myelin membrane breakdown in CDV-DL and TMEV-DL. (2) Methods: ROS metabolites and antioxidative enzymes were assessed using immunofluorescence in cerebellar lesions of naturally CDV-infected dogs and spinal cord tissue of TMEV-infected mice. The transcription of selected genes involved in ROS generation and detoxification was analyzed using gene-expression microarrays in CDV-DL and TMEV-DL. (3) Results: Immunofluorescence revealed increased amounts of oxidized lipids, malondialdehyde, and 8-hydroxyguanosine in CDV-DL while TMEV-infected mice did not reveal marked changes. In contrast, microarray-analysis showed an upregulated gene expression associated with ROS generation in both diseases. (4) Conclusion: In summary, the present study demonstrates a similar upregulation of gene-expression of ROS generation in CDV-DL and TMEV-DL. However, immunofluorescence revealed increased accumulation of ROS metabolites exclusively in CDV-DL. These results suggest dierences in the pathogenesis of demyelination in these two animal models

    Concomitant necrotizing encephalitis and granulomatous meningoencephalitis in four toy breed dogs.

    Get PDF
    The term "meningoencephalitis of unknown origin" (MUO) describes a group of different encephalitides in dogs in which no infectious agent can be identified and a multifactorial etiology is suspected. Among others, genetic factors and unknown triggers seem to be involved. Included are necrotizing leukoencephalitis (NLE), necrotizing meningoencephalitis (NME), and granulomatous meningoencephalitis (GME). In this case series, we describe the histopathological findings of four toy breed dogs with focal or multifocal necrotizing encephalitis and mainly lymphocytic perivascular infiltrates on histopathological examination. At the same time, however, in all dogs, focal or multifocal high-grade angiocentric granulomatous inflammatory lesions were evident with focal histiocytic perivascular infiltrates in the brain. The former changes are typical for NLE and NME. In contrast, the latter changes are indicative of GME. This case series shows that the boundaries between the necrotizing and granulomatous variants of MUO might be smooth and suggests that NLE, NME, and GME are not as distinct as previously described. This finding could be a crucial piece of the puzzle in the study of the pathogenesis of MUO as individual susceptibility and specific triggers could be responsible for the manifestation of the different MUO subtypes

    Detection of MERS-CoV antigen on formalin-fixed paraffin-embedded nasal tissue of alpacas by immunohistochemistry using human monoclonal antibodies directed against different epitopes of the spike protein

    Get PDF
    Middle East respiratory syndrome (MERS) represents an important respiratory disease accompanied by lethal outcome in one third of human patients. In recent years, several investigators developed protective antibodies which could be used as prophylaxis in prospective human epidemics. In the current study, eight human monoclonal antibodies (mAbs) with neutralizing and non-neutralizing capabilities, directed against different epitopes of the MERS-coronavirus (MERS-CoV) spike (MERS-S) protein, were investigated with regard to their ability to immunohistochemically detect respective epitopes on formalin-fixed paraffin-embedded (FFPE) nasal tissue sections of MERS-CoV experimentally infected alpacas. The most intense immunoreaction was detected using a neutralizing antibody directed against the receptor binding domain S1B of the MERS-S protein, which produced an immunosignal in the cytoplasm of ciliated respiratory epithelium and along the apical membranous region. A similar staining was obtained by two other mAbs which recognize the sialic acid-binding domain and the ectodomain of the membrane fusion subunit S2, respectively. Five mAbs lacked immunoreactivity for MERS-CoV antigen on FFPE tissue, even though they belong, at least in part, to the same epitope group. In summary, three tested human mAbs demonstrated capacity for detection of MERS-CoV antigen on FFPE samples and may be implemented in double or triple immunohistochemical methods.info:eu-repo/semantics/acceptedVersio

    Experimental infection of dromedaries with Middle East respiratory syndrome-Coronavirus is accompanied by massive ciliary loss and depletion of the cell surface receptor dipeptidyl peptidase 4

    Get PDF
    Middle East respiratory syndrome (MERS) represents an important respiratory disease accompanied by lethal outcome in one-third of human patients. Recent data indicate that dromedaries represent an important source of infection, although information regarding viral cell tropism and pathogenesis is sparse. In the current study, tissues of eight dromedaries receiving inoculation of MERS-Coronavirus (MERS-CoV) after recombinant Modified-Vaccinia-Virus-Ankara (MVA-S)-vaccination (n = 4), MVA-vaccination (mock vaccination, n = 2) and PBS application (mock vaccination, n = 2), respectively, were investigated. Tissues were analyzed by histology, immunohistochemistry, immunofluorescence, and scanning electron microscopy. MERS-CoV infection in mock-vaccinated dromedaries revealed high numbers of MERS-CoV-nucleocapsid positive cells, T cells, and macrophages within nasal turbinates and trachea at day four post infection. Double immunolabeling demonstrated cytokeratin (CK) 18 expressing epithelial cells to be the prevailing target cell of MERS-CoV, while CK5/6 and CK14 expressing cells did not co-localize with virus. In addition, virus was occasionally detected in macrophages. The acute disease was further accompanied by ciliary loss along with a lack of dipeptidyl peptidase 4 (DPP4), known to mediate virus entry. DPP4 was mainly expressed by human lymphocytes and dromedary monocytes, but overall the expression level was lower in dromedaries. The present study underlines significant species-specific manifestations of MERS and highlights ciliary loss as an important finding in dromedaries. The obtained results promote a better understanding of coronavirus infections, which pose major health challenges.info:eu-repo/semantics/publishedVersio

    The impact of upstream and downstream processing on the quality of oil bodies of partially de-hulled sunflower seeds

    Get PDF
    Few publications on oil bodies or oleosomes seem concerned about their quality (chemical and physical) ex-vivo. This work attempts to identify the main factors (processing and pre-processing) that affect the quality/integrity of sunflower seed oil bodies recovered through a wet-milling process. The physical state of seeds during wet milling had a significant impact on the quality of the oil body suspension. Pre-soaking for 6 hours before wet milling and multiple washing with alkaline buffer (0.1M sodium bicarbonate) was performed to isolate high quality oil body suspensions. It was evident from different physical measurements such as particle size, ζ-potential and light microscopy that pre-soaking had a positive influence on the quality of oil body suspensions with no significant signs of aggregation or coalescence. It was also observed that the resultant washed oil body suspensions were highly surface charged (-28.4 ± 1.2 mV) indicating very stable suspension phase behavior. Washing oil bodies not only removes non-integral, extraneous proteins (derived from the seed matrix) but enriches the lipid content including Tocopherol (α-tocopherol: 491.6 mg/kg of washed oil bodies compared with 252.6 mg/kg crude oil bodies). Changes in the composition of oil bodies after washing have been observed before, but this research also monitored the size of oil bodies after washing, and our results indicate that certain factors can shift the distribution of droplet size. It is believed that any change in average size of droplets indicate the presence of disrupted oil bodies whose surface chemistry has changed enough to compromise their integrity on washing. The retention of droplet size on washing may, therefore, be diagnostic for the recovery of intact oil bodies. An assessment of the integrity of oil bodies recovered from sunflower seeds after accelerated aging (5 months) was carried out. Free fatty acid was more pronounced in oil rather than oil bodies, this could be due to the elimination of some of the free acid bound to oil body during washing. Although some minor variation was observed during seed aging, however, the oil bodies remained stable in the final suspension. The results indicate that oil body membrane was extremely robust under extreme conditions and the integrity of oil bodies was preserved. In addition, oil bodies obtained in this study were resistant to oxidation due to the presence of naturally occurring antioxidants (including vitamin E) associated with them.. The results indicate that the physical barrier of surface membrane protein (oelosin) protect oil bodies against pro-oxidants

    Current Insights Into the Pathology of Canine Intervertebral Disc Extrusion-Induced Spinal Cord Injury.

    Get PDF
    Spinal cord injury (SCI) in dogs is commonly attributed to intervertebral disc extrusion (IVDE). Over the last years substantial progress was made in the elucidation of factors contributing to the pathogenesis of this common canine disease. A detailed understanding of the underlying histopathological and molecular alterations in the lesioned spinal cord represents a prerequisite to translate knowledge on the time course of secondary injury processes into the clinical setting. This review summarizes the current state of knowledge of the underlying pathology of canine IVDE-related SCI. Pathological alterations in the spinal cord of dogs affected by IVDE-related SCI include early and persisting axonal damage and glial responses, dominated by phagocytic microglia/macrophages. These processes are paralleled by a pro-inflammatory microenvironment with dysregulation of cytokines and matrix metalloproteinases within the spinal cord. These data mirror findings from a clinical and therapeutic perspective and can be used to identify biomarkers that are able to more precisely predict the clinical outcome. The pathogenesis of progressive myelomalacia, a devastating complication of SCI in dogs, is not understood in detail so far; however, a fulminant and exaggerating secondary injury response with massive reactive oxygen species formation seems to be involved in this unique neuropathological entity. There are substantial gaps in the knowledge of pathological changes in IVDE with respect to more advanced and chronic lesions and the potential involvement of demyelination. Moreover, the role of microglia/macrophage polarization in IVDE-related SCI still remains to be investigated. A close collaboration of clinical neurologists and veterinary pathologists will help to facilitate an integrative approach to a more detailed understanding of the molecular pathogenesis of canine IVDE and thus to identify therapeutic targets

    Cryopreservation of Canine Primary Dorsal Root Ganglion Neurons and Its Impact upon Susceptibility to Paramyxovirus Infection

    No full text
    Canine dorsal root ganglion (DRG) neurons, isolated post mortem from adult dogs, could provide a promising tool to study neuropathogenesis of neurotropic virus infections with a non-rodent host spectrum. However, access to canine DRG is limited due to lack of donor tissue and the cryopreservation of DRG neurons would greatly facilitate experiments. The present study aimed (i) to establish canine DRG neurons as an in vitro model for canine distemper virus (CDV) infection; and (ii) to determine whether DRG neurons are cryopreservable and remain infectable with CDV. Neurons were characterized morphologically and phenotypically by light microscopy, immunofluorescence, and functionally, by studying their neurite outgrowth and infectability with CDV. Cryopreserved canine DRG neurons remained in culture for at least 12 days. Furthermore, both non-cryopreserved and cryopreserved DRG neurons were susceptible to infection with two different strains of CDV, albeit only one of the two strains (CDV R252) provided sufficient absolute numbers of infected neurons. However, cryopreserved DRG neurons showed reduced cell yield, neurite outgrowth, neurite branching, and soma size and reduced susceptibility to CDV infection. In conclusion, canine primary DRG neurons represent a suitable tool for investigations upon the pathogenesis of neuronal CDV infection. Moreover, despite certain limitations, cryopreserved canine DRG neurons generally provide a useful and practicable alternative to address questions regarding virus tropism and neuropathogenesis

    Characterization of periodic acid-Schiff-positive granular deposits in the hippocampus of SJL/J mice

    No full text
    Periodic acid-Schiff (PAS)-positive granular deposits in the hippocampus have been reported previously in certain inbred mouse strains such as C57BL/6 and the senescent-accelerated mouse prone-8. Here, we report for the first time that similar PAS-positive granules age dependently occur in SJL/J mice, a mouse strain, for instance, used for central nervous system disease research. Moreover, similar granules stained intensely positive with a polyclonal antibody directed against p75 neurotrophin receptor (p75NTR). Granular deposits were absent in young mice and developed with aging in CA1 and CA2 regions of the hippocampus. Interestingly, granules significantly diminished in SJL/J mice previously treated with cuprizone, a copper chelator, which is a useful model for toxic demyelination. The presented data support the idea that granules might be the result of an imbalance of redox-active metals and/or a dysregulation of complementary mechanisms that regulate their homeostasis in astrocyte–neuron coupling, respectively. It remains to be determined whether the unsuspected immunoreactivity for p75NTR represents a false-positive reaction or whether p75NTR is crucially involved in the pathogenesis of age-related hippocampal granular deposits in mice

    Contribution of Schwann Cells to Remyelination in a Naturally Occurring Canine Model of CNS Neuroinflammation.

    No full text
    Gliogenesis under pathophysiological conditions is of particular clinical relevance since it may provide evidence for regeneration promoting cells recruitable for therapeutic purposes. There is evidence that neurotrophin receptor p75 (p75NTR)-expressing cells emerge in the lesioned CNS. However, the phenotype and identity of these cells, and signals triggering their in situ generation under normal conditions and certain pathological situations has remained enigmatic. In the present study, we used a spontaneous, idiopathic and inflammatory CNS condition in dogs with prominent lympho-histiocytic infiltration as a model to study the phenotype of Schwann cells and their relation to Schwann cell remyelination within the CNS. Furthermore, the phenotype of p75NTR-expressing cells within the injured CNS was compared to their counter-part in control sciatic nerve and after peripheral nerve injury. In addition, organotypic slice cultures were used to further elucidate the origin of p75NTR-positive cells. In cerebral and cerebellar white and grey matter lesions as well as in the brain stem, p75NTR-positive cells co-expressed the transcription factor Sox2, but not GAP-43, GFAP, Egr2/Krox20, periaxin and PDGFR-α. Interestingly, and contrary to the findings in control sciatic nerves, p75NTR-expressing cells only co-localized with Sox2 in degenerative neuropathy, thus suggesting that such cells might represent dedifferentiated Schwann cells both in the injured CNS and PNS. Moreover, effective Schwann cell remyelination represented by periaxin- and P0-positive mature myelinating Schwann cells, was strikingly associated with the presence of p75NTR/Sox2-expressing Schwann cells. Intriguingly, the emergence of dedifferentiated Schwann cells was not affected by astrocytes, and a macrophage-dominated inflammatory response provided an adequate environment for Schwann cells plasticity within the injured CNS. Furthermore, axonal damage was reduced in brain stem areas with p75NTR/Sox2-positive cells. This study provides novel insights into the involvement of Schwann cells in CNS remyelination under natural occurring CNS inflammation. Targeting p75NTR/Sox2-expressing Schwann cells to enhance their differentiation into competent remyelinating cells appears to be a promising therapeutic approach for inflammatory/demyelinating CNS diseases

    Reactive Oxygen Species Are Key Mediators of Demyelination in Canine Distemper Leukoencephalitis but not in Theiler’s Murine Encephalomyelitis

    No full text
    (1) Background: Canine distemper virus (CDV)-induced demyelinating leukoencephalitis (CDV-DL) in dogs and Theiler’s murine encephalomyelitis (TME) virus (TMEV)-induced demyelinating leukomyelitis (TMEV-DL) are virus-induced demyelinating conditions mimicking Multiple Sclerosis (MS). Reactive oxygen species (ROS) can induce the degradation of lipids and nucleic acids to characteristic metabolites such as oxidized lipids, malondialdehyde, and 8-hydroxyguanosine. The hypothesis of this study is that ROS are key eector molecules in the pathogenesis of myelin membrane breakdown in CDV-DL and TMEV-DL. (2) Methods: ROS metabolites and antioxidative enzymes were assessed using immunofluorescence in cerebellar lesions of naturally CDV-infected dogs and spinal cord tissue of TMEV-infected mice. The transcription of selected genes involved in ROS generation and detoxification was analyzed using gene-expression microarrays in CDV-DL and TMEV-DL. (3) Results: Immunofluorescence revealed increased amounts of oxidized lipids, malondialdehyde, and 8-hydroxyguanosine in CDV-DL while TMEV-infected mice did not reveal marked changes. In contrast, microarray-analysis showed an upregulated gene expression associated with ROS generation in both diseases. (4) Conclusion: In summary, the present study demonstrates a similar upregulation of gene-expression of ROS generation in CDV-DL and TMEV-DL. However, immunofluorescence revealed increased accumulation of ROS metabolites exclusively in CDV-DL. These results suggest dierences in the pathogenesis of demyelination in these two animal models
    • …
    corecore