5,152 research outputs found
Quarterly literature review of the remote sensing of natural resources
The Technology Application Center reviewed abstracted literature sources, and selected document data and data gathering techniques which were performed or obtained remotely from space, aircraft or groundbased stations. All of the documentation was related to remote sensing sensors or the remote sensing of the natural resources. Sensors were primarily those operating within the 10 to the minus 8 power to 1 meter wavelength band. Included are NASA Tech Briefs, ARAC Industrial Applications Reports, U.S. Navy Technical Reports, U.S. Patent reports, and other technical articles and reports
Literature review of the remote sensing of natural resources
Abstracts of 596 documents related to remote sensors or the remote sensing of natural resources by satellite, aircraft, or ground-based stations are presented. Topics covered include general theory, geology and hydrology, agriculture and forestry, marine sciences, urban land use, and instrumentation. Recent documents not yet cited in any of the seven information sources used for the compilation are summarized. An author/key word index is provided
Hidden Broad Line Seyfert 2 Galaxies in the CfA and 12micron Samples
We report the results of a spectropolarimetric survey of the CfA and 12micron
samples of Seyfert 2 galaxies (S2s). Polarized (hidden) broad line regions
(HBLRs) are confirmed in a number of galaxies, and several new cases
(F02581-1136, MCG -3-58-7, NGC 5995, NGC 6552, NGC 7682) are reported. The
12micron S2 sample shows a significantly higher incidence of HBLR (50%) than
its CfA counterpart (30%), suggesting that the latter may be incomplete in
hidden AGNs. Compared to the non-HBLR S2s, the HBLR S2s display distinctly
higher radio power relative to their far-infrared output and hotter dust
temperature as indicated by the f25/f60 color. However, the level of
obscuration is indistinguishable between the two types of S2. These results
strongly support the existence of two intrinsically different populations of
S2: one harboring an energetic, hidden S1 nucleus with BLR, and the other, a
``pure S2'', with weak or absent S1 nucleus and a strong, perhaps dominating
starburst component. Thus, the simple purely orientation-based unification
model is not applicable to all Seyfert galaxies.Comment: 5 pages with embedded figs, ApJ Letters, in pres
Quasi-periodic pulsations in the gamma-ray emission of a solar flare
Quasi-periodic pulsations (QPPs) of gamma-ray emission with a period of about 40 s are found in a single loop X-class solar flare on 2005 January 1 at photon energies up to 2-6 MeV with the SOlar Neutrons and Gamma-rays (SONG) experiment aboard the CORONAS-F mission. The oscillations are also found to be present in the microwave emission detected with the Nobeyama Radioheliograph, and in the hard X-ray and low energy gamma-ray channels of RHESSI. Periodogram and correlation analysis shows that the 40 s QPPs of microwave, hard X-ray, and gamma-ray emission are almost synchronous in all observation bands. Analysis of the spatial structure of hard X-ray and low energy (80-225 keV) gamma-ray QPP with RHESSI reveals synchronous while asymmetric QPP at both footpoints of the flaring loop. The difference between the averaged hard X-ray fluxes coming from the two footpoint sources is found to oscillate with a period of about 13 s for five cycles in the highest emission stage of the flare. The proposed mechanism generating the 40 s QPP is a triggering of magnetic reconnection by a kink oscillation in a nearby loop. The 13 s periodicity could be produced by the second harmonics of the sausage mode of the flaring loop
Quasi-periodic pulsations in solar and stellar flares: re-evaluating their nature in the context of power-law flare Fourier spectra
The nature of quasi-periodic pulsations in solar and stellar flares remains
debated. Recent work has shown that power-law-like Fourier power spectra, also
referred to as 'red' noise processes, are an intrinsic property of solar and
stellar flare signals, a property that many previous studies of this phenomenon
have not accounted for. Hence a re-evaluation of the existing interpretations
and assumptions regarding QPP is needed. Here we adopt a Bayesian method for
investigating this phenomenon, fully considering the Fourier power law
properties of flare signals. Using data from the PROBA2/LYRA, Fermi/GBM,
Nobeyama Radioheliograph and Yohkoh/HXT instruments, we study a selection of
flares from the literature identified as QPP events. Additionally we examine
optical data from a recent stellar flare that appears to exhibit oscillatory
properties. We find that, for all but one event tested, an explicit oscillation
is not required in order to explain the observations. Instead, the flare
signals are adequately described as a manifestation of a power law in the
Fourier power spectrum, rather than a direct signature of oscillating
components or structures. However, for the flare of 1998 May 8, strong evidence
for the existence of an explicit oscillation with P ~ 14-16 s is found in the
17 GHz radio data and the 13-23 keV Yohkoh HXT data. We conclude that, most
likely, many previously analysed events in the literature may be similarly
described in terms of power laws in the flare Fourier power spectrum, without
the need to invoke a narrowband, oscillatory component. As a result the
prevalence of oscillatory signatures in solar and stellar flares may be less
than previously believed. The physical mechanism behind the appearance of the
observed power laws is discussed.Comment: 11 pages, 7 figures, 1 table. Accepted for publication in The
Astrophysical Journa
Characteristics of magnetoacoustic sausage modes
Aims: We perform an advanced study of the fast magnetoacoustic sausage oscillations of coronal loops in the context of MHD coronal seismology to establish the dependence of the sausage mode period and cut-off wavenumber on the plasma- of the loop-filling plasma. A parametric study of the ratios for different harmonics of the mode is also carried out.
Methods: Full magnetohydrodynamic numerical simulations were performed using Lare2d, simulating hot, dense loops in a magnetic slab environment. The symmetric Epstein profile and a simple step-function profile were both used to model the density structure of the simulated loops. Analytical expressions for the cut-off wavenumber and the harmonic ratio between the second longitudinal harmonic and the fundamental were also examined.
Results: It was established that the period of the global sausage mode is only very weakly dependent on the value of the plasma- inside a coronal loop, which justifies the application of this model to hot flaring loops. The cut-off wavenumber kc for the global mode was found to be dependent on both internal and external values of the plasma-, again only weakly. By far the most important factor in this case was the value of the density contrast ratio between the loop and the surroundings. Finally, the deviation of the harmonic ratio P1/2P2 from the ideal non-dispersive case was shown to be considerable at low k, again strongly dependent on plasma density. Quantifying the behaviour of the cut-off wavenumber and the harmonic ratio has significant applications to the field of coronal seismology
Instrumental oscillations in RHESSI count rates during solar flares
Aims: We seek to illustrate the analysis problems posed by RHESSI spacecraft
motion by studying persistent instrumental oscillations found in the
lightcurves measured by RHESSI's X-ray detectors in the 6-12 keV and 12-25 keV
energy range during the decay phase of the flares of 2004 November 4 and 6.
Methods: The various motions of the RHESSI spacecraft which may contribute to
the manifestation of oscillations are studied. The response of each detector in
turn is also investigated. Results: We find that on 2004 November 6 the
observed oscillations correspond to the nutation period of the RHESSI
instrument. These oscillations are also of greatest amplitude for detector 5,
while in the lightcurves of many other detectors the oscillations are small or
undetectable. We also find that the variation in detector pointing is much
larger during this flare than the counterexample of 2004 November 4.
Conclusions: Sufficiently large nutation motions of the RHESSI spacecraft lead
to clearly observable oscillations in count rates, posing a significant hazard
for data analysis. This issue is particularly problematic for detector 5 due to
its design characteristics. Dynamic correction of the RHESSI counts, accounting
for the livetime, data gaps, and the transmission of the bi-grid collimator of
each detector, is required to overcome this issue. These corrections should be
applied to all future oscillation studies.Comment: 8 pages, 10 figure
- …
