22 research outputs found

    Orientational effects on the amplitude and phase of polarimeter signals in double resonance atomic magnetometry

    Get PDF
    Double resonance optically pumped magnetometry can be used to measure static magnetic fields with high sensitivity by detecting a resonant atomic spin response to a small oscillating field perturbation. Determination of the resonant frequency yields a scalar measurement of static field (B_0) magnitude. We present calculations and experimental data showing that the on-resonance polarimeter signal of light transmitted through an atomic vapour in arbitrarily oriented B0B_0 may be modelled by considering the evolution of alignment terms in atomic polarisation. We observe that the amplitude and phase of the magnetometer signal are highly dependent upon B_0 orientation, and present precise measurements of the distribution of these parameters over the full 4 pi solid angle

    A feed-forward measurement scheme for periodic noise suppression in atomic magnetometry

    Get PDF
    We present an unshielded, double-resonance magnetometer in which we have implemented a feed-forward measurement scheme in order to suppress periodic magnetic noise arising from, and correlated with, the mains electricity alternating current line. The technique described here uses a single sensor to track ambient periodic noise and feed forward to suppress it in a subsequent measurement. This feed forward technique has shown significant noise suppression of electrical mains-noise features of up to 22 dB under the fundamental peak at 50 Hz, 3 dB at the first harmonic (100 Hz), and 21 dB at the second harmonic (150 Hz). This technique is software based, requires no additional hardware, and is easy to implement in an existing magnetometer

    Grating chips for quantum technologies

    Get PDF
    We have laser cooled3x10^6 87Rb atoms to 3uK in a micro-fabricated grating magneto-optical trap (GMOT), enabling future mass-deployment in highly accurate compact quantum sensors. We magnetically trap the atoms, and use Larmor spin precession for magnetic sensing in the vicinity of the atomic sample. Finally, we demonstrate an array of magneto-optical traps with a single laser beam, which will be utilised for future cold atom gradiometry

    Free-induction-decay magnetometer with enhanced optical pumping

    Get PDF
    Spin preparation prior to a free-induction-decay (FID) measurement can be adversely affected by transverse bias fields, particularly in the geophysical field range. A strategy that enhances the spin polarization accumulated before readout is demonstrated, by synchronizing optical pumping with a magnetic field pulse that supersedes any transverse fields by over two order of magnitude. The pulsed magnetic field is generated along the optical pumping axis using a compact electromagnetic coil pair encompassing a micro-electromechanical systems (MEMS) vapor cell. The coils also resistively heat the cesium (Cs) vapor to the optimal atomic density without spurious magnetic field contributions as they are rapidly demagnetized to approximately zero field during spin readout. The demagnetization process is analyzed electronically, and directly with a FID measurement, to confirm that the residual magnetic field is minimal during detection. The sensitivity performance of this technique is compared to existing optical pumping modalities across a wide magnetic field range. A noise floor sensitivity of 238 fT/√Hz238\,\mathrm{fT/\surd{Hz}} was achieved in a field of approximately 50 μT\mathrm{50\,\mu{T}}, in close agreement with the Cram\'{e}r-Rao lower bound (CRLB) predicted noise density of 258 fT/√Hz258\,\mathrm{fT/\surd{Hz}}.Comment: 10 pages, 7 figure

    Vector magnetometry exploiting phase-geometry effects in a double-resonance alignment magnetometer

    Get PDF
    Double-resonance optically pumped magnetometers are an attractive instrument for unshielded magnetic-field measurements due to their wide dynamic range and high sensitivity. The use of linearly polarized pump light creates alignment in the atomic sample, which evolves in the local static magnetic field, and is driven by a resonant applied field perturbation, modulating the polarization of transmitted light. We demonstrate experimentally that the amplitude and phase of observed first- and second-harmonic components in the transmitted polarization signal contain sufficient information to measure the static-magnetic-field magnitude and orientation. We describe a laboratory system for experimental measurements of these effects and verify a theoretical derivation of the observed signal. We demonstrate vector-field tracking under varying static-field orientations and show that the static-field magnitude and orientation may be observed simultaneously, with an experimentally realized resolution of 1.7 pT and 0.63 mrad in the most sensitive field orientation

    Optical pumping enhancement of a free-induction-decay magnetometer

    Get PDF
    Spin preparation prior to a free-induction-decay (FID) measurement can be adversely affected by transverse bias fields, particularly in the geophysical field range. A strategy that enhances the spin polarization accumulated before readout is demonstrated, by synchronizing optical pumping with a magnetic field pulse that supersedes any transverse fields by over two order of magnitude. The pulsed magnetic field is generated along the optical pumping axis using a compact electromagnetic coil pair encompassing a micro-electromechanical systems (MEMS) vapor cell. The coils also resistively heat the cesium (Cs) vapor to the optimal atomic density without spurious magnetic field contributions as they are rapidly demagnetized to approximately zero field during spin readout. The demagnetization process is analyzed electronically, and directly with a FID measurement, to confirm that the residual magnetic field is minimal during detection. The sensitivity performance of this technique is compared to existing optical pumping modalities across a wide magnetic field range. A noise floor sensitivity of 238 fT/√Hz was achieved in a field of approximately 50 μT, in close agreement with the Cramér-Rao lower bound (CRLB) predicted noise density of 258 fT/√Hz

    Free-induction-decay magnetic field imaging with a microfabricated Cs vapor cell

    Get PDF
    Magnetic field imaging is a valuable resource for signal source localization and characterization. This work reports an optically pumped magnetometer (OPM) based on the free-induction-decay (FID) protocol, that implements microfabricated cesium (Cs) vapor cell technology to visualize the magnetic field distributions resulting from various magnetic sources placed close to the cell. The slow diffusion of Cs atoms in the presence of a nitrogen (N2) buffer gas enables spatially independent measurements to be made within the same vapor cell by translating a 175 μm diameter probe beam over the sensing area. For example, the OPM was used to record temporal and spatial information to reconstruct magnetic field distributions in one and two dimensions. The optimal magnetometer sensitivity was estimated to be 0.43 pT/√Hz within a Nyquist limited bandwidth of 500 Hz. Furthermore, the sensor’s dynamic range exceeds the Earth’s field of approximately 50 μT, which provides a framework for magnetic field imaging in unshielded environments

    Recording the Heart Beat of Cattle using a Gradiometer System of Optically Pumped Magnetometers

    Get PDF
    Monitoring of heart rate has the potential to provide excellent data for the remote monitoring of animals, and heart rate has been associated with stress, pyrexia, pain and illness in animals. However monitoring of heart rate in domesticated animals is difficult as it entails the restraint of the animal (which may in turn affect heart rate), and the application of complex monitoring equipment that is either invasive or not practical to implement under commercial farm conditions. Therefore accurate non-invasive automated remote monitoring of heart rate has not been possible in domesticated animals. Biomagnetism associated with muscle and nerve action provides a promising emerging field in medical sensing, but it is currently confined to magnetically-shielded clinical environments. In this study, we use biomagnetic sensing on commercial dairy cattle under farm conditions as a model system to show proof-of-principle for non-contact magnetocardiography (MCG) outside a controlled laboratory environment. By arranging magnetometers in a differential set-up and using purpose-built low-noise electronics, we are able to suppress common mode noise and successfully record the heart rate, the heart beat intervals and the heart beat amplitude. Comparing the MCG signal with simultaneous data recorded using a conventional electrocardiogram (ECG) allowed alignment of the two signals, and was able to match features of the ECG including the P-wave, the QRS complex and the T-wave. This study has shown the potential for MCG to be developed as a non-contact method for the assessment of heart rate and other cardiac attributes in adult dairy cattle. Whilst this study using an animal model showed the capabilities of un-shielded MCG, these techniques also suggest potentially exciting opportunities in human cardiac medicine outside hospital environments

    Portable single-beam cesium zero-field magnetometer for magnetocardiography

    Get PDF
    Optically pumped magnetometers (OPMs) are becoming common in the realm of biomagnetic measurements. We discuss the development of a prototype zero-field cesium portable OPM and its miniaturized components. Zero-field sensors operate in a very low static magnetic field environment and exploit physical effects in this regime. OPMs of this type are extremely sensitive to small magnetic fields, but they bring specific challenges to component design, material choice, and current routing. The miniaturized cesium atomic vapor cell within this sensor has been produced through integrated microfabrication techniques. The cell must be heated to 120°C for effective sensing, while the sensor external faces must be skin safe ≤40 ° C making it suitable for use in biomagnetic measurements. We demonstrate a heating system that results in a stable outer package temperature of 36°C after 1.5 h of 120°C cell heating. This relatively cool package temperature enables safe operation on human subjects which is particularly important in the use of multi-sensor arrays. Biplanar printed circuit board coils are presented that produce a reliable homogeneous field along three axes, compensating residual fields and occupying only a small volume within the sensor. The performance of the prototype portable sensor is characterized through a measured sensitivity of 90 fT / Hz in the 5 to 20 Hz frequency band and demonstrated through the measurement of a cardiac magnetic signal

    Portable single-beam cesium zero-field magnetometer for magnetocardiography

    Get PDF
    Optically pumped magnetometers (OPMs) are becoming common in the realm of biomagnetic measurements. We discuss the development of a prototype zero-field cesium portable OPM and its miniaturized components. Zero-field sensors operate in a very low static magnetic field environment and exploit physical effects in this regime. OPMs of this type are extremely sensitive to small magnetic fields, but they bring specific challenges to component design, material choice, and current routing. The miniaturized cesium atomic vapor cell within this sensor has been produced through integrated microfabrication techniques. The cell must be heated to 120°C for effective sensing, while the sensor external faces must be skin safe ≤40°C making it suitable for use in biomagnetic measurements. We demonstrate a heating system that results in a stable outer package temperature of 36°C after 1.5 h of 120°C cell heating. This relatively cool package temperature enables safe operation on human subjects which is particularly important in the use of multi-sensor arrays. Biplanar printed circuit board coils are presented that produce a reliable homogeneous field along three axes, compensating residual fields and occupying only a small volume within the sensor. The performance of the prototype portable sensor is characterized through a measured sensitivity of 90 fT / Hz in the 5 to 20 Hz frequency band and demonstrated through the measurement of a cardiac magnetic signal
    corecore