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107 Rottenrow East, Glasgow, UK

(Dated: February 27, 2018)

Double-resonance optically pumped magnetometers are an attractive instrument for unshielded
magnetic field measurements due to their wide dynamic range and high sensitivity. Use of linearly
polarised pump light creates alignment in the atomic sample, which evolves in the local static
magnetic field, and is driven by a resonant applied field perturbation, modulating the polarisation
of transmitted light. We show for the first time that the amplitude and phase of observed first- and
second-harmonic components in the transmitted polarisation signal contain sufficient information
to measure static magnetic field magnitude and orientation. We describe a laboratory system
for experimental measurements of these effects and verify a theoretical derivation of the observed
signal. We demonstrate vector field tracking under varying static field orientations and show that
the static field magnitude and orientation may be observed simultaneously, with experimentally
realised resolution of 1.7 pT and 0.63 mrad in the most sensitive field orientation.

INTRODUCTION

Unshielded magnetic field measurements are a key
technique in applications ranging from mineral survey-
ing [1] to archaeology [2], and the development of com-
pact fT-sensitivity magnetometers [3] may lead to signifi-
cant advances in these applications. The measurement of
gradients and curvature in an arbitrarily oriented static
magnetic field are of critical importance. The practi-
cal difficulties associated with developing portable cryo-
genic systems for SQUID-based magnetometers makes
the development of optically pumped atomic magne-
tometers attractive. Unshielded optically-pumped gra-
diometers have been demonstrated recently [4], using a
double-resonance magnetometry scheme. In this work we
demonstrate a technique for measurement of the full mag-
netic field vector through the observation of geometry-
dependent phase variations in the first- and second-
harmonic components of the double-resonance signal.

In a double-resonance magnetometer, the evolution of
atomic spins in a static field ~B0 is interrogated by modu-
lation at a frequency ωRF, with resonant response when
ωRF is equal to the atomic Larmor frequency ωL = γ|B0|,
where γ is the gyromagnetic ratio for the probed atomic
ground state. Modulation may take the form of oscil-
lating pump light amplitude [5] polarisation [6] or fre-

quency [7], or a small oscillating applied field ~BRF [8].
For alkali metal vapour magnetometers operating in the
geophysical field range ωRF ≈ O(2π · 100 kHz), a conve-
nient frequency range for digitization and software signal
analysis, making double-resonance magnetometry a use-
ful technique for uncompensated, portable, unshielded
magnetometry, combining high dynamic range and high
sensitivity. In order to develop techniques for compact
sensors of low cost and power consumption, we use a
single monochromatic pump-probe laser beam and ap-

ply a small magnetic field perturbation to resonantly
drive atomic spin precession. The precessing atomic spins
modulate the optical activity of the atomic cell and are
detected by measurement of the polarisation of transmit-
ted light.

Double-resonance sensors have been used widely in
scalar field measurements for many years [9, 10]. Lock-
ing ωRF to ωL using the dispersive component of the de-
modulated signal response allows |B0| to be determined
readily. However, this technique requires that the demod-
ulation phase be set a priori and yields only information
on the magnitude of ~B0. In addition, signal amplitude
in double-resonance magnetometry is highly dependent
on the orientation of ~B0 relative to ~BRF and the axis of
light propagation. Orientations of ~B0 with zero signal
amplitude are known as dead-zones. We note that mea-
surement schemes for dead-zone reduction or dead-zone
free magnetometry have been demonstrated successfully
[11]. In this paper we demonstrate a sensor configuration

and analysis scheme for determination of ~B0 orientation
from the measured phases of the signal contributions ob-
served at ωRF and 2 · ωRF. We show that the detected
signal can be analysed using an atomic alignment model
to determine the magnitude and orientation of ~B0, allow-
ing the full field vector to be inferred.

Various other schemes for vector atomic magnetom-
etry have been demonstrated, including zero-field sen-
sors [12, 13], orthogonal probe lasers [14], orthogonal
pump lasers [15], measurement of EIT (electromagneti-
cally induced transparency) resonances [16] and applica-

tion of significant slowly varying ~B0 perturbations [17–
19]. The scheme demonstrated here complements these
approaches by addressing some of their practical draw-
backs. Zero-field techniques are well-suited for shielded
measurements, but lack the dynamic range required for
portable unshielded measurements, and additionally re-
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FIG. 1. Schematic showing the geometry of the optical sys-
tem and the laboratory (Lab), rotating-wave (RW) and anal-
yser reference frames. The orientation of the static magnetic
field ~B0 is described by the spherical polar angles θV and θL,
and the oscillating magnetic field applied on the z-axis. The
dashed lines show the linear light polarisation decomposed
into orthogonal analysis components, whose intensity differ-
ence is measured using a differential photodetector.

quire full-field compensation. The use of compensation
coils, additional light frequencies or beams and addi-
tional ~B0 perturbations add significant hardware over-
heads and power requirements. We also wished to avoid
vector magnetometry schemes requiring sequential mea-
surements under varying field conditions, or observation
of free induction decay signals, as these methods require
longer sampling times and impose stringent upper limits
on the achievable sensor bandwidth.

THEORY

A simple single-beam Mx magnetometer configuration
is used, but the geometry of the static and modulating
magnetic fields, atomic sample and analysis optics is crit-
ical to the analysis technique and is shown in detail in
Figure 1. A half-waveplate is used to balance the de-
tector by rotating the linear polarisation of transmitted
light by 45◦, meaning that light which is x-polarised at
the atoms is equally split by the analyser. The observed
differential signal is equal to the difference in transmis-
sion of the two orthogonal analysis components separated
by the polarising beam splitter.

The absorption of linear polarisation states by the
atomic sample varies with the evolution of polarisation
alignment moments in the sample. If the light polari-
sation axis defines the quantisation axis, then the light

absorption coefficient is proportional to

κ ∝ A0√
3
m0,0 −

√

2

3
A2m2,0, (1)

where the analysing powers A0 and A2 depend on the
hyperfine states coupled by the light, and the multipole
moments mk,q describe the polarisation of the atomic
sample [20, 21].
We can therefore write the observed signal as the dif-

ference between the absorption of the two analyser lin-
ear polarisation states, as shown in Figure 1. Since the
terms in m0,0 are invariant under rotations, and cancel in
subtraction, the observed differential signal f(t) is pro-
portional to

f(t) = m′

2,0(t)−m′′

2,0(t), (2)

where m′ and m′′ denote multipole moments describing
atomic polarisation alignment in the two orthogonal anal-
ysis frames. Rotation [22] of these moments into the lab-
oratory frame yields

f(t) =
√

3

2
(m2,−1(t)−m2,1(t)). (3)

The dynamic evolution of multipole moments under
the static field ~B0 and perturbing field ~BRF can be de-
rived from the Lioville Equation [23]. Steady-state os-
cillating solutions can be found by setting ṁk,q = 0 in

a frame co-rotating with the perturbing field ~BRF (the
rotating wave frame, denoted mRW

k,q ). If the RW frame is

chosen such that ~BRF(t = 0) is in the −x direction, we
can follow the method of [20], finding solutions for mRW

2,q

using

i

Γ
ṁRW

2,q = Mqq′m
RW

2,q′ + im̄RW

2,q , (4)

where Γ is an isotropic spin relaxation rate, m̄RW
2,q are

moments describing equilibrium magnetisation in the ab-
sence of the RF field, and

Mqq′ =
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. (5)

For convenience we define the dimensionless quantities
x = (ωRF − ωL)/Γ and S = γB⊥

RF
/Γ, where B⊥

RF
is the

component of ~BRF perpendicular to ~B0 and γ is the gy-
romagnetic ratio for the Cs 62S1/2 (F = 4) ground state.
We have assumed that optical pumping is weak (the

optical pumping rate is small compared to the spin relax-
ation rate Γ) ensuring that orientation-alignment conver-
sion [24] is negligible, atomic spin relaxation is isotropic,
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and the equilibrium magnetisation m̄RW

k,q is aligned with

the static field vector ~B0 (i.e. m̄RW

k,q = m̄ for q = 0,

m̄RW

k,q = 0 otherwise). The magnitude of m̄ is propor-

tional to the projection of mRW
2,0 onto mPUMP

2,0 , where

mPUMP

k,q are defined in a frame where the quantisation
axis is parallel to the polarisation axis of the pump light.
Steady-state ṁRW

2,q = 0 solutions for mRW
2,q can be

found, and so m2,q(t) found by rotation [22]. Substi-
tution into (3) yields f(t), with terms in e0·iωRFt, e1·iωRFt

and e2·iωRFt. Similarly to [20], we write the amplitude R

and phase φ of the oscillating responses to ~BRF in the
following form;

R(ωRF) =
A1f

(

x2(1− 2S2 + 4x2)2 + (1 + S2 + 4x2)2
)

1

2

(1 + S2 + x2)(1 + 4S2 + 4x2)
(6)

φ(ωRF) = φ1f

0 + arctan
x(1− 2S2 + 4x2)

1 + S2 + 4x2
(7)

R(2 · ωRF) =
A2f

(

9x2 + (1 + S2 − 2x2)2
)

1

2

(1 + S2 + x2)(1 + 4S2 + 4x2)
(8)

φ(2 · ωRF) = φ2f

0 + arctan
3x

1 + S2 − 2x2
. (9)

The on-resonance amplitude A and phase φ0 of the signal
vary with θL and θV as given in Equations 10-13.

A2

1f = m̄2S2
(

(cos θV cos θL)
2 + (cos 2θV sin θL)

2
)

(10)

A2

2f = m̄2S4

(

(

1

2
sin 2θV sin θL

)2
+ (sin θV cos θL)

2

)

(11)

tanφ1f

0 =
−m̄S cos θV cos θL
m̄S cos 2θV sin θL

(12)

tanφ2f

0 =
2m̄ sin θV cos θL
−m̄ sin 2θV sin θL

(13)

TEST SYSTEM

In order to obtain accurate data on the relation
of double-resonance signal phase to ~B0 orientation, a
shielded test system was used, reducing the effect of back-
ground magnetic field noise and allowing fine control of
~B0 orientation. The use of magnetic shielding also al-
lowed us to operate in a low-field regime (|B0| ≈ 200 nT),
in which the non-linear Zeeman splitting, which leads to
systematic shifts in the observed magnetic resonance, is
negligible compared to the natural linewidth of the mag-
netic resonance.

FIG. 2. Schematic of the experimental system, showing ex-
ternal cavity diode laser (ECDL), Glan-Thompson linear po-
lariser (GT), magnetometer cell, five-layer mu-metal shield,
three-axis Helmholtz coils, half-wave plate (λ/2), polaris-
ing beam splitter (PBS), differential photodetector (DPD),
low-noise coil driver (LNCD) and data acquisition system
(DAC/ADC). The data acquisition system is controlled us-
ing a PC (not shown).

Figure 2 shows the test system used, and a detailed
hardware description can also be found in [25]. A spher-
ical room temperature cell of 28 mm diameter contain-
ing 133Cs [26] is contained within a five-layer mu-metal
shield. Optical access is via a 10 mm diameter axial
port and the local static magnetic field at the cell ~B0 is
controlled using three pairs of Helmholtz coils driven by
six independent software-controlled current supplies. A
Helmholtz coil pair on the z-axis is used to apply the
oscillating perturbation field ~BRF. A 1.4 MHz 16-bit
DAC/ADC (National Instruments PCIe-6353) is used to

generate ~BRF and digitise the differential photodetector
signal. Demodulation is carried out in software.

An external-cavity diode laser (New Focus Vortex
6800) provides optical pump/probe light resonant with
the 62S1/2 (F = 4) to 62P1/2 (F = 3) transition of an
external 133Cs reference cell. This light is linearly po-
larised along the x-axis prior to the magnetometry cell
using a Glan-Thompson polariser.

A single magnetic resonance measurement is conducted
as follows; following the establishment of the desired
~B0 using the calibrated coil system, an RF modulation
signal is generated using the digital-analogue converter.
The RF modulation frequency ωRF is chirped in finite
steps. The detector signal response to the modulation
signal is synchronously digitised, and a sample segment
from each ωRF step demodulated to obtain the in-phase
X(ωRF), X(2 · ωRF) and quadrature Y (ωRF), Y (2 · ωRF)
responses. The sample segments are timed such that
each commences in phase with ~BRF and contains an in-
teger number of ~BRF periods. Sample segment length is
kept approximately constant for all ωRF, and each sam-
ple segment is preceded by a pre-trigger segment of fixed
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FIG. 3. A measured and fitted magnetic resonance, taken
with |B0| = 200 nT applied at θV = 118◦ , θL = 101◦

and |BRF| = 1.5 nT. A total of 150 segments of data are
taken, with segment sample time 20 ms. Left: amplitude
(R) and phase (φ) components of the first-harmonic de-
modulated signal. Right: amplitude (R) and phase (φ) of
the second-harmonic demodulated signal. The data are fit-
ted with Equations 6 - 9, yielding ωL = 2π· 699.60(2) Hz,
Γ = 12.1(1) Hz, A1f = 107.4(7) mV, φ1f

0 = 0.9672(9) π.rad,
φ2f
0 = −0.383(6)π.rad and Ω = 2.89(8) Hz.

duration, to allow the steady-state oscillating response
to ~BRF(ωRF) to be measured.
Figure 3 shows measured signal amplitude R ≡√
X2 + Y 2 and phase φ ≡ arctan(X/Y ) for data demod-

ulated at ωRF and 2 · ωRF. Least-squares fits of Equa-
tions 6 - 9 (these resonance shapes and the underlying
physical model are described in detail below) are used to
estimate the Larmor frequency ωL, spin relaxation rate
Γ, on-resonance signal amplitude A and phase φ0, and
magnetic Rabi rate Ω.

STATIC FIELD CALIBRATION

To achieve precise control of ~B0, allowing measurement
of orientational effects, the static field generating coils are
calibrated by measurement of the Larmor frequency un-
der varying orientations of the applied field. The method
for initial coil calibration is described in [25]. For a given

application of the applied field ~BAPP, the magnitude of
the measured field |BMEAS| = ωL/γ is determined by fit-
ting Equations 6 - 9 to the demodulated data R(ωRF)
and φ(ωRF).
Following the initial calibration, fine coil calibration

is carried out by orienting ~BAPP in 1646 orientations,
spaced with equal angular coverage over the full solid
angle, and performing a weighted fit to the observed dis-
tribution of |BMEAS| with

|BMEAS| =
√

∑

i

(ǫi + aiBAPP
i )2, (14)

where ǫ is the background field and a is a dimensionless
coil calibration factor. The calibration and offset of each

FIG. 4. Measured magnitude of ~B0, determined from mea-
surements of ωL at 1646 different ~B0 orientations, evenly cov-
ering the full solid angle. Top: distribution of measured |B0|
around desired field magnitude of 200 nT. The RMS spread
of |B0| is 302 pT. Bottom: angular distribution of |B0|.

coil can then be corrected by the best-fit parameters ai
and ǫi. The uncertainties in the fit δa and δǫ can be
used to estimate the tolerances in the magnitude and
orientation of ~B0, δB0 and δθ, by assuming that the total
field uncertainty, estimated by δB0 = |δǫ| + |B0||δa|, is
perpendicular to ~B0, yielding δθ ≈ δB0/|B0| for δB0 ≪
|B0|.

Table I gives the calibration parameter uncertainties
for the final coil calibration, and Figure 4 shows the mea-
sured value of |B0| over the full solid angle for the sub-
sequent field vector measurements. In order to render
heading-error effects due to non-linear Zeeman splitting
negligible, a field magnitude of |B0| ≈ 200 nT is used
throughout. From the calibration uncertainties we esti-
mate tolerances of δ|B0| = 54 pT and δθ = 0.27 mrad.
The RMS spread of observed magnitudes δ|B0|RMS from
Figure 4 is 302 pT. Although the difference between
δ|B0| and δ|B0|RMS is indicative of some remaining non-

normal (i.e. anisotropic, systematic) contributions to ~B0

discrepancies, we can still be confident that ~B0 can be
set with orientational fidelity in the mrad range.
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TABLE I. Uncertainties in coil calibration parameters from
final calibration fit for |B0| = 200 nT. The resulting tolerances

in ~B0 magnitude and orientation are δ|B0| = 54 pT and δθ =
0.27 mrad.

Coil axis δa (10−5) δǫ (pT)
x 7.2 11
y 10.0 14
z 9.7 14

FIG. 5. Observed and (inset) calculated distributions of

on-resonance signal phase with variation of ~B0 orientation
over full solid angle. Top: first-harmonic phase φ1f

0 . Bot-

tom: second-harmonic phase φ2f
0 . Calculated distributions

are found using Equations 12 - 13.

VECTOR FIELD MEASUREMENTS

Equations 10 - 13 indicate a strong dependency be-
tween the on-resonance signal components and the orien-
tation of ~B0. Using the calibrated field control described
above, automated scans of ~B0 were carried out. Each
scan consists of 1646 orientations of ~B0, spread over the

FIG. 6. Observed and (inset) calculated distributions of on-

resonance signal amplitude with variation of ~B0 orientation
over full solid angle. Top: first-harmonic amplitude A1f. Bot-
tom: second-harmonic amplitude A2f. Calculated distribu-
tions are found using Equations 10 - 11.

full solid angle with approximately even angular distribu-
tion. At each ~B0 orientation, a magnetic resonance mea-
surement was carried out, and a fit to the resulting data
using Equations 6 - 9 used to obtain best-fit values and
uncertainties for φ1f

0 , φ
2f
0 , A1f and A2f. The results of this

measurement are shown in Figures 5 - 6. Good agreement
was found between the on-resonance signal components
in the measured data and Equations 10 - 13.

We note the dependence of the first- and second-
harmonic on-resonance signal phases φ1f

0 and φ2f
0 on the

orientation of ~B0. From Equations 12 - 13 we can derive
Equations 15 - 16 for θV and θL.

tan2 θV = 1− tanφ2f
0

tanφ1f
0

(15)
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FIG. 7. Measured and set magnetic field magnitude and orientation for a wide range of ~B0 orientations. Observed values and
uncertainties for θV and θL are calculated from φ1f

0 and φ2f
0 using Equations 15 and 16. The point of best angular resolution is

measured at (|B0| = 199.8445(17) nT , θV = 100.986(27)◦ , θL = 118.198(24)◦ ). The inset in the lower left corner shows the

contour described by successive ~BAPP orientations, plotted using the same projection as Figures 5 and 6.

tan θL =
− cos θV

cos 2θV tanφ1f
0

(16)

By measuring the resonant response of the detector
signal, demodulating to obtain the first- and second-
harmonic signal amplitude and phase, and fitting to de-
termine the Larmor frequency and on-resonance phases,
we can calculate θV and θL and make a full-vector mea-
surement of ~B0.

Figure 7 shows calculated θV and θL for a range of ~B0

orientations defined using the calibrated Helmholtz coil
system. The range of orientations is shown as an inset
to Figure 7 and was chosen to scan over the zone of high
signal amplitude around the light polarisation (x -) axis.
At each point the first- and second-harmonic resonance
responses are measured for a range of x and fitted using
Equations 6 - 9. The on-resonance phases φ1f

0 and φ2f
0 are

free parameters in this model, and the fit uncertainties
are propagated through Equations 15 - 16 to give the
uncertainties in θV and θL. The point of highest observed
angular resolution has uncertainties of δ|B0| = 1.7 pT,
δθV = 0.027◦, δθL = 0.024◦, giving an overall angular
resolution at this point of δθ = 0.036◦ (0.63 mrad).

CONCLUSIONS

The measurement of complementary field orienta-
tion information using a hitherto-scalar double-resonance
magnetometry technique has clear potential for impact in
practical measurements of arbitrarily oriented fields. Ex-
isting three-axis magnetometer data is often transformed
to derive data on field magnitude, declination and incli-
nation. In this work we demonstrate a scheme for inde-
pendent measurement of the field vector in this spher-
ical polar basis, while also exploiting the precise and
accurate measurement of field magnitude possible with
the double-resonance technique. The single-beam, RF-
modulated detection scheme used is imminently suitable
for scalable, portable devices.

The data shown in Figure 7 demonstrate resolution of
the magnetic field magnitude at the pT-level and mag-
netic field orientation at the sub-mrad level. The vari-
ation of the measured field magnitude and orientation
from the expected field magnitude (200 nT) and orien-
tation (solid lines) exposes residual calibration errors in

the Helmholtz coil system, which can set ~B0 with toler-
ances in the 100-pT and few-mrad ranges. The general
validity of the phase-orientation effects derived from the-
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ory and observed in Figure 5 are not called into question,
but a more stringent test of the absolute accuracy of the
field orientation measurement will require improvements
to the hardware of the Helmholtz coil system, including
improved design tolerances on the coil geometry (cur-
rently at the 100-micron level), improved linearity of the
coil current drivers and associated DACs and increased
detector signal-to-noise, which would also improve the
resolution of both the calibration and vector field data.
The double-resonance scheme presented also has some

drawbacks in the implementation of practical sensors,
which may form the context for further work. We ob-
serve dead-zones, both where signal amplitude falls to
zero (dark regions in Figure 6) and angular dead-zones;
orientations for which the observed signal phase has no
variation with field orientation ∂φ0/∂θ = 0. These angu-
lar dead-zones do not necessarily coincide with the signal-
amplitude dead-zones, and can be seen in Figure 7 as
angular data points with very high uncertainties. A fur-
ther drawback of this technique is the requirement that
magnetic detuning x be measured independently from
phases-on-resonance φ1f

0 and φ2f
0 . In this work we met

this requirement at the expense of bandwidth by mea-
suring and fitting a ωRF frequency sweep at each data
point.
To conclude, we have demonstrated a new analysis

technique for double-resonance alignment magnetome-
try that can be used to implement vector magnetome-
try using a scalar device. No additional lasers or field-
generating coils are required, and the vector field sen-
sitivity achieved using this technique could be further
enhanced by rapid independent measurement of x, φ1f

0

and φ2f
0 , allowing the field vector ~B0(t) to be determined

with high bandwidth.
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