1,425 research outputs found

    Liquid ethylene-propylene copolymers

    Get PDF
    Oligomers are prepared by heating solid ethylene-propylene rubber in container that retains solid and permits liquid product to flow out as it is formed. Molecular weight and viscosity of liquids can be predetermined by process temperature. Copolymers have low viscosity for given molecular weight

    Dynamic economic and emission dispatch model considering wind power under Energy Market Reform: A case study

    Get PDF
    With the increasing issues in the environmental and the high requirement for energy, the Energy Market Reform (EMR) was introduced by the UK government. This paper develops a novel Dynamic Economic and Emission Dispatch (DEED) model for a combined conventional and wind power system incorporating the carbon price floor (CPF) and the Emission Performance Standard (EPS) that is supported by the EMR. The proposed model aims to determine the optimal operation strategy for the given system on power dispatch taking into account wind power waste and reserve and also the environmental aspect, especially the CPF of greenhouse gases and the emission limit of the EPS for different decarbonisation scenarios. Case studies for the demand profile in the Sheffield region in the UK with different time intervals is presented. The results indicate that renewable power is superior in both the economics and emissions to a mid to long-term energy strategy in the UK

    How to correct small quantum errors

    Full text link
    The theory of quantum error correction is a cornerstone of quantum information processing. It shows that quantum data can be protected against decoherence effects, which otherwise would render many of the new quantum applications practically impossible. In this paper we give a self contained introduction to this theory and to the closely related concept of quantum channel capacities. We show, in particular, that it is possible (using appropriate error correcting schemes) to send a non-vanishing amount of quantum data undisturbed (in a certain asymptotic sense) through a noisy quantum channel T, provided the errors produced by T are small enough.Comment: LaTeX2e, 23 pages, 6 figures (3 eps, 3 pstricks

    Patterned hydrophobic gas diffusion layers for enhanced water management in polymer electrolyte fuel cells

    Get PDF
    Flooding of the cathode due to water accumulation is one of the biggest limiting factors in the performance of polymer electrolyte fuel cells (PEFCs). This study therefore attempts to solve this issue by fabricating gas diffusion layers (GDLs) with differently patterned hydrophobic regions. The GDLs in three different patterns (triangular, diamond, and inverted-triangular) were prepared by brushing a Polytetrafluoroethylene (PTFE) solution onto commercial carbon papers through a mask and tested in PEFCs. The patterned GDLs results in superior performance in all cases compared to a uniformly PTFE-treated GDL. Notably, the oxygen transport resistance is significantly reduced, indicating that the water accumulation in the cathode is avoided. This is attributed to the patterned hydrophobicity gradient providing distinct pathways for water and oxygen. The GDL with triangular patterning displays the highest peak power density, due to the fact that the untreated less hydrophobic region is in direct contact with the cathode outlet in this case, facilitating the removal of excess liquid water. Overall, the study confirms that the GDLs with patterned hydrophobicity could be used to enhance the performance of commercial PEFC systems by facilitating water management, potentially leading to improved efficiency and durability

    Optimisation and characterisation of graphene-based microporous layers for polymer electrolyte membrane fuel cells

    Get PDF
    The viability of graphene-based microporous layers (MPLs) for polymer electrolyte membrane fuel cells is critically assessed through detailed characterisation of the morphology, microstructure, transport properties and electrochemical characterisation. Microporous layer composition was optimised by the fabrication of several hybrid MPLs produced from various ratios of graphene to Vulcan carbon black. Single cell tests were performed at various relative humidities between 25% and 100% at 80 °C, in order to provide a detailed understanding of the effect of the graphene-based MPL composition on the fuel cell performance. The inclusion of graphene in the MPL alters the pores size distribution of the layer and results in presence of higher amount of mesopores. Polarisation curves indicate that a small addition of graphene (i.e. 30 wt %) in the microporous layer improves the fuel cell performance under low humidity conditions (e.g. 25% relative humidity). On the other hand, under high humidity conditions (≥50% relative humidity), adding higher amounts of graphene (≥50 wt %) improves the fuel cell performance as it creates a good amount of mesopores required to drive excess water away from the cathode electrode, particularly when operating with high current densities

    Technico-economic modelling of ground and air source heat pumps in a hot and dry climate

    Get PDF
    In a hot and dry country such as Saudi Arabia, air-conditioning systems consume seventy per cent of the electrical energy. In order to reduce this demand, conventional air-conditioning technology should be replaced by more efficient renewable energy systems. These should be compared to the current standard systems which use air source heat pumps (ASHPs). These have a poor performance when the air temperature is high. In Saudi Arabia, this can be as much as 50 °C. The purpose of this work, therefore, is to simulate and evaluate the performance of ground source heat pumps (GSHPs) compared with systems employing (ASHPs). For the first time, both systems were comprehensively modelled and simulated using the Transient System Simulation (TRNSYS). In addition, the Ground Loop Design (GLD) software was used to design the length of the ground loop heat exchanger. In order to assess this configuration, an evaluation of a model of a single story office building, based on the climatic conditions and geological characteristics that occur in the city of Riyadh in Saudi Arabia was investigated. The period of evaluation was twenty years in order to determine the Coefficient of Performance (COP), Energy Efficiency Ratio (EER) and power consumption. The simulation results show that the GSHP system has a high performance when compared to ASHP. The average annual COP and EER were 4.1 and 15.5 for the GSHP compared to 3.8 and 11 for the ASHP respectively, and the GSHP is a feasible alternative to ASHP with an 11 years payback period with an 18% total cost saving over the simulation period and 36% lower annual energy consumption. The TRNSYS model shows that despite the positive results of the modeling, the high rate of the underground thermal imbalance (88%) could lead to a system failure in the long term

    Model-based systems engineering with requirements variability for embedded real-time systems

    Get PDF
    Product Line Engineering (PLE) offers the benefits of reducing costs and time to market by reusing requirements and components. Current PLE methods, however, mainly focus on the software aspects and are lacking in support for many system level concerns like physical and non-functional require-ments (Quality of Service attributes) that play an important role in the development of Embedded Real-Time Systems (RTS). This paper proposes a new method to support a combination of variability modelling (a key feature of PLE) and model-based requirement engineering (in SysML) for Embedded RTS. It provides four main contributions: 1. it extends the Orthogonal Variability Model (OVM) to support the separation of function-al, physical and non-functional variability; 2. it proposes a mechanism for the evolution of variability; 3. stakeholders' specifications for variable requirements are extended by the proposed approach; 4. it increases the consistency of system models by directly using SysML Activity Diagrams and Block Definition Diagrams as a base model for refining variability models for requirement representation. The proposed method is illustrated by an Aircraft Engine Control System case study. © 2015 IEEE

    Synthetic Data Generation and Defense in Depth Measurement of Web Applications

    Get PDF
    Measuring security controls across multiple layers of defense requires realistic data sets and repeatable experiments. However, data sets that are collected from real users often cannot be freely exchanged due to privacy and regulatory concerns. Synthetic datasets, which can be shared, have in the past had critical flaws or at best been one time collections of data focusing on a single layer or type of data. We present a framework for generating synthetic datasets with normal and attack data for web applications across multiple layers simultaneously. The framework is modular and designed for data to be easily recreated in order to vary parameters and allow for inline testing. We build a prototype data generator using the framework to generate nine datasets with data logged on four layers: network, file accesses, system calls, and database simultaneously. We then test nineteen security controls spanning all four layers to determine their sensitivity to dataset changes, compare performance even across layers, compare synthetic data to real production data, and calculate combined defense in depth performance of sets of controls

    Rapid Susceptibility Testing and Microcolony Analysis of Candida spp. Cultured and Imaged on Porous Aluminum Oxide

    Get PDF
    Contains fulltext : 124300.pdf (publisher's version ) (Open Access)BACKGROUND: Acquired resistance to antifungal agents now supports the introduction of susceptibility testing for species-drug combinations for which this was previously thought unnecessary. For pathogenic yeasts, conventional phenotypic testing needs at least 24 h. Culture on a porous aluminum oxide (PAO) support combined with microscopy offers a route to more rapid results. METHODS: Microcolonies of Candida species grown on PAO were stained with the fluorogenic dyes Fun-1 and Calcofluor White and then imaged by fluorescence microscopy. Images were captured by a charge-coupled device camera and processed by publicly available software. By this method, the growth of yeasts could be detected and quantified within 2 h. Microcolony imaging was then used to assess the susceptibility of the yeasts to amphotericin B, anidulafungin and caspofungin (3.5 h culture), and voriconazole and itraconazole (7 h culture). SIGNIFICANCE: Overall, the results showed good agreement with EUCAST (86.5% agreement; n = 170) and E-test (85.9% agreement; n = 170). The closest agreement to standard tests was found when testing susceptibility to amphotericin B and echinocandins (88.2 to 91.2%) and the least good for the triazoles (79.4 to 82.4%). Furthermore, large datasets on population variation could be rapidly obtained. An analysis of microcolonies revealed subtle effects of antimycotics on resistant strains and below the MIC of sensitive strains, particularly an increase in population heterogeneity and cell density-dependent effects of triazoles. Additionally, the method could be adapted to strain identification via germ tube extension. We suggest PAO culture is a rapid and versatile method that may be usefully adapted to clinical mycology and has research applications
    • …
    corecore