5 research outputs found

    Science of The Total Environment / Spatiotemporal analysis of bacterial biomass and activity to understand surface and groundwater interactions in a highly dynamic riverbank filtration system

    No full text
    Characterization of surface water groundwater interaction in riverbank filtration (RBF) systems is of decisive importance to drinking water utilities due to the increasing microbial and chemical contamination of surface waters. These interactions are commonly assessed by monitoring changes in chemical water quality, but this might not be indicative for microbial contamination. The hydrological dynamics of the infiltrating river can influence these interactions, but seasonal temperature fluctuations and the supply of oxygen and nutrients from the surface water can also play a role. In order to understand the interaction between surface water and groundwater in a highly dynamic RBF system of a large river, bacterial abundance, biomass and carbon production as well as standard chemical parameters were analyzed during a 20 month period under different hydrological conditions. In the investigated RBF system, groundwater table changes exhibited striking dynamics even though flow velocities were rather low under regular discharge conditions. Bacterial abundance, biomass, and bacterial carbon production decreased significantly from the river towards the drinking water abstraction well. The cell size distribution changed from a higher proportion of large cells in the river, towards a higher proportion of small cells in the groundwater. Although biomass and bacterial abundance were correlated to water temperatures and several other chemical parameters in the river, such correlations were not present in the groundwater. In contrast, the dynamics of the bacterial groundwater community was predominantly governed by the hydrogeological dynamics. Especially during flood events, large riverine bacteria infiltrated further into the aquifer compared to average discharge conditions. With such information at hand, drinking water utilities are able to improve their water abstraction strategies and react quicker to changing hydrological conditions in the RBF system.(VLID)469955

    Spatiotemporal resolved sampling for the interpretation of micropollutant removal during riverbank filtration

    No full text
    Riverbank filtration (RBF) systems along rivers are widely used as public water supplies. In these systems, many organic micropollutants (OMPs) are attenuated, but some compounds have shown to be rather persistent. Their fate and transport has been studied in RBF sites along lakes and small rivers, but not extensively along large and dynamic rivers. Therefore, the influence of flood events on OMP behavior in these large and dynamic RBF sites was investigated. Monthly samples were taken from surface- and groundwater up to a distance of 900 m from the riverbank of the Danube from March 2014 till May 2016. Two flood events were sampled more extensively nearby the river. Results showed that changes in flow conditions in the river not only caused changes in OMP concentrations, but also in their load. It was seen that the load of benzotriazole, carbamazepine and sulfamethoxazole in the river increased with increasing river discharges. After a relatively long, oxic groundwater passage, several OMPs were reduced. In contrast to previous work, we found that benzotriazole was almost fully removed under oxic conditions. When entering the aquifer, benzotriazole concentrations were significantly reduced and at a distance of 550 m from the river, >97% was degraded. Carbamazepine and sulfamethoxazole showed relatively persistent behavior in the aquifer. The concentrations measured during flood events were in the same range as seasonal sampling. Furthermore concentrations in the groundwater were higher during these events than in the Danube and can reach further into the aquifer. During flood events some highly degradable compounds (i.e. diclofenac) were found up to a distance of 24 m from the river. These results implied that drinking water utilities with RBF wells in oxic, alluvial aquifers located close to highly dynamic rivers need to consider a potential reduction in groundwater quality during and directly after flood events.Austrian Science Fund (FWF)Austrian Science Fund (FWF)Danube-Lower Lobau Network Projec

    QMRAcatch : Human-Associated Fecal Pollution and Infection Risk Modeling for a River/Floodplain Environment

    No full text
    Protection of drinking water resources requires addressing all relevant fecal pollution sources in the considered catchment. A freely available simulation tool, QMRAcatch, was recently developed to simulate concentrations of fecal indicators, a genetic microbial source tracking (MST) marker, and intestinal pathogens in water resources and to conduct a quantitative microbial risk assessment (QMRA). At the same time, QMRAcatch was successfully applied to a region of the Danube River in Austria, focusing on municipal wastewater emissions. Herein, we describe extension of its application to a Danube River floodplain, keeping the focus on fecal sources of human origin. QMRAcatch was calibrated to match measured human-associated MST marker concentrations for a dry year and a wet year. Appropriate performance characteristics of the human-associated MST assay were proven by simulating correct and false-positive marker concentrations, as determined in human and animal feces. With the calibrated tool, simulated and measured enterovirus concentrations in the rivers were compared. Finally, the calibrated tool allowed demonstrating that 4.5 log enterovirus and 6.6 log norovirus reductions must be achieved to convert current surface water to safe drinking water that complies with a health-based target of 10 infections person yr. Simulations of the low- and high-pollution scenarios showed that the required viral reductions ranged from 0 to 8 log. This study has implications for water managers with interests in assessing robust catchment protection measures and water treatment criteria by considering the fate of fecal pollution from its sources to the point of abstraction
    corecore