16 research outputs found

    Editorial GMS special issue

    No full text

    Zinc as a Gatekeeper of Immune Function

    No full text
    After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc “importers” (ZIP 1–14), zinc “exporters” (ZnT 1–10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate “zinc waves”, and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function

    Increase of the Intracellular Zinc Concentration Leads to an Activation and Internalisation of the Epidermal Growth Factor Receptor in A549 Cells

    No full text
    (1) Background: Zinc is suggested to play a major role in epidermal growth factor (EGF)-induced cell regeneration and proliferation. To deepen the knowledge on the underlying mechanisms zinc’s effects on the epidermal growth factor receptor (EGFR) activation and its endocytosis was investigated in the alveolar carcinoma cell line A549. (2) Methods: An increase of intracellular zinc was generated by adding zinc extracellularly compared to the intracellular release of zinc from zinc-binding proteins by stimulation with a nitric oxide donor. Zinc-initiated EGFR phosphorylation was checked by Western blotting and receptor endocytosis assays were performed by using flow cytometry. (3) Results: Besides a dose-dependent EGFR phosphorylation, a dose- and time dependent significant receptor internalisation was initiated by both types of zinc increases. In addition, both increased intracellular zinc levels further promoted EGF-induced EGFR phosphorylation and internalisation. (4) Conclusion: This report confirms a transactivating effect of zinc on the EGFR for A549 cells and is the first describing an influence of zinc on the EGFR endocytosis. The transferability of the fine-tuning of EGFR-induced signalling by zinc needs to be verified in vivo, but the presented data underline that zinc might be helpful during treatment of disturbed regeneration and tissue repair

    Immunosenescence of Polymorphonuclear Neutrophils

    No full text
    All immune cells are affected by aging, contributing to the high susceptibility to infections and increased mortality observed in the elderly. The effect of aging on cells of the adaptive immune system is well documented. In contrast, knowledge concerning age-related defects of polymorphonuclear neutrophils (PMN) is limited. During the past decade, it has become evident that in addition to their traditional role as phagocytes, neutrophils are able to secrete a wide array of immunomodulating molecules. Their importance is underlined by the finding that genetic defects that lead to neutropenia increase susceptibility to infections. Whereas there is consistence about the constant circulating number of PMN throughout aging, the abilities of tissue infiltration, phagocytosis, and oxidative burst of PMN from aged donors are discussed controversially. Furthermore, there are numerous discrepancies between in vivo and in vitro results, as well as between results for murine and human PMN. Most of the reported functional changes can be explained by defective signaling pathways, but further research is required to get a detailed insight into the underlying molecular mechanisms. This could form the basis for drug development in order to prevent or treat age-related diseases, and thus to unburden the public health systems

    Zinc Status Impacts the Epidermal Growth Factor Receptor and Downstream Protein Expression in A549 Cells

    No full text
    Zinc has been suggested to play a role in carcinogenesis and tumor progression. Serum zinc levels of lung cancer patients are for example lower than in healthy individuals. The activation and expression of the epidermal growth factor receptor (EGFR), which plays a role in tumor biology, are presumably influenced by zinc. EGFR activation influences cell adhesion and immune escape. This study provides insights into the impacts of zinc on the EGFR activation and expression of downstream proteins such as E-cadherin and PD-L1 in the alveolar carcinoma cell line A549. To model chronic changes in zinc homeostasis, A549 cells were cultured in media with different zinc contents. EGFR surface expression of unstimulated and stimulated A549 cells was determined by flow cytometry. EGFR phosphorylation as well as the protein expression of E-cadherin and PD-L1 were analyzed by Western blot. In our hands, chronic zinc deficiency led to increased EGFR surface expression, decreased E-cadherin protein expression and increased PD-L1 protein expression. Zinc supplementation decreased EGFR surface expression and PD-L1 protein expression. In summary, zinc-deficient A549 cells may display a more malignant phenotype. Thus, future clinical research should further focus on the possible benefits of restoring disturbed zinc homeostasis, especially in lung cancer patients

    Zinc deficiency leads to reduced interleukin-2 production by active gene silencing due to enhanced CREMα expression in T cells

    No full text
    BACKGROUND & AIMS: The micronutrient zinc is essential for proper immune function. Consequently, zinc deficiency leads to impaired immune function, as seen in decreased secretion of interleukin (IL)-2 by T cells. Although this association has been known since the late 1980s, the underlying molecular mechanisms are still unknown. Zinc deficiency and reduced IL-2 levels are especially found in the elderly, which in turn are prone to chronic diseases. Here, we describe a new molecular link between zinc deficiency and reduced IL-2 expression in T cells. METHODS: The effects of zinc deficiency were first investigated in vitro in the human T cell lines Jurkat and Hut-78 and complemented by in vivo data from zinc-supplemented pigs. A short- and long-term model for zinc deficiency was established. Zinc levels were detected by flow cytometry and expression profiles were investigated on the mRNA and protein level. RESULTS: The expression of the transcription factor cAMP-responsive-element modulator α (CREMα) is increased during zinc deficiency in vitro, due to increased protein phosphatase 2A (PP2A) activity, resulting in decreased IL-2 production. Additionally, zinc supplementation in vivo reduced CREMα levels causing increased IL-2 expression. On epigenetic levels increased CREMα binding to the IL-2 promoter is mediated by histone deacetylase 1 (HDAC1). The HDAC1 activity is inhibited by zinc. Moreover, deacetylation of the activating histone mark H3K9 was increased under zinc deficiency, resulting in reduced IL-2 expression. CONCLUSIONS: With the transcription factor CREMα a molecular link was uncovered, connecting zinc deficiency with reduced IL-2 production due to enhanced PP2A and HDAC1 activity.status: Published onlin

    Retrospective observational study evaluating zinc plasma level in patients undergoing thoracoabdominal aortic aneurysm repair and its correlation with outcome

    No full text
    Thoracoabdominal aortic aneurysm (TAAA) repair is related to a relevant morbidity and in-hospital mortality rate. In this retrospective observational single-center study including serum zinc levels of 33 patients we investigated the relationship between zinc and patients' outcome following TAAA repair. Six patients died during the hospital stay (18%). These patients showed significantly decreased zinc levels before the intervention (zinc levels before intervention: 60.09 mu g/dl [survivors] vs. 45.92 mu g/dl [non-survivors]). The post-interventional intensive care SOFA-score (Sepsis-related organ failure assessment) (at day 2) as well as the SAPS (Simplified Acute Physiology Score) (at day 2) showed higher score points in case of low pre-interventional zinc levels. No significant correlation between patient comorbidities and zinc level before intervention, except for peripheral arterial disease (PAD), which was significantly correlated to reduced baseline zinc levels, was observed. Septic shock, pneumonia and urinary tract infections were not associated to reduced zinc levels preoperatively as well as during therapy. Patients with adverse outcome after TAAA repair showed reduced pre-interventional zinc levels. We speculate that decreased zinc levels before intervention may be related to a poorer outcome because of poorer physical status as well as negatively altered perioperative inflammatory response
    corecore