38 research outputs found

    Facilitating trypanosome imaging.

    Get PDF
    Research on trypanosomes as a model organism has provided a substantial contribution to a detailed understanding of basic cellular processes within the last few years. At the same time, major advances in super-resolution microscopy have been achieved, facilitating the resolution of biological structures in living cells at a scale of a few nm. However, the motility of trypanosomes has prevented access to high resolution microscopy of live cells. Here, we present a hydrogel based on poly(ethylene glycol) functionalized with either norbornene or thiol moieties for UV induced thiol-ene crosslinking for the embedding and imaging of live trypanosomes. The resulting gel exhibits low autofluorescence properties, immobilizes the cells efficiently on the nanometer scale and is compatible with cell viability for up to one hour at 24 °C. We applied super-resolution imaging to the inner plasma membrane leaflet using lipid-anchored eYFP as a probe. We find specific domains within the membrane where the fluorescence either accumulates or appears diluted rather than being homogenously distributed. Based on a Ripley's analysis, the size of the domains was determined to be raccumulated=170±5 nm and rdilute>115±15 nm. We hypothesize that this structuring of the membrane is associated with the underlying cytoskeleton.ME is supported by DFG grants EN305 and SPP1726. ME is a member of the Wilhelm Conrad Röntgen Center for Complex Material Systems (RCCM). Work in MC's lab was funded by the a Wellcome Trust award (093008/Z10/Z)

    The Flagellar Arginine Kinase in Trypanosoma brucei Is Important for Infection in Tsetse Flies

    Get PDF
    African trypanosomes are flagellated parasites that cause sleeping sickness. Parasites are transmitted from one mammalian host to another by the bite of a tsetse fly. Trypanosoma brucei possesses three different genes for arginine kinase (AK) including one (AK3) that encodes a protein localised to the flagellum. AK3 is characterised by the presence of a unique amino-terminal insertion that specifies flagellar targeting. We show here a phylogenetic analysis revealing that flagellar AK arose in two independent duplication events in T. brucei and T. congolense, the two species of African trypanosomes that infect the tsetse midgut. In T. brucei, AK3 is detected in all stages of parasite development in the fly (in the midgut and in the salivary glands) as well as in bloodstream cells, but with predominance at insect stages. Genetic knockout leads to a slight reduction in motility and impairs parasite infectivity towards tsetse flies in single and competition experiments, both phenotypes being reverted upon expression of an epitope-tagged version of AK3. We speculate that this flagellar arginine kinase is important for T. brucei infection of tsetse, especially in the context of mixed infections and that its flagellar targeting relies on a system equivalent to that discovered for calflagins, a family of trypanosome flagellum calcium binding proteins

    Steuerungsmechanismen der Differenzierung in Trypanosomen: die Rolle von ALBA Proteinen in post-transkriptioneller mRNA Kontrolle

    No full text
    Trypanosoma brucei is a digenetic eukaryotic parasite that develops in different tissues of a mammalian host and a tsetse fly. It is responsible for sleeping sickness in sub-saharan Africa. The parasite cycle involves more than nine developmental stages that can be clearly distinguished by their general morphology, their metabolism and the relative positioning of their DNA-containing organelles. During their development, trypanosomes remain exclusively extracellular and encounter changing environments with different physico-chemical properties (nutritional availability, viscosity, temperature, etc.). It has been proposed that trypanosomes use their flagellum as a sensing organelle, in agreement with the established role of structurally-related cilia in metazoa and ciliates. Recognition of environmental triggers is presumed to be at the initiation of differentiation events, leading to the parasite stage that is the best suited to the new environment. These changes are achieved by the modification of gene expression programmes, mostly underlying post-transcriptional control of mRNA transcripts. We first demonstrate that the RNA-binding proteins ALBA3/4 are involved in specific differentiation processes during the parasite development in the fly. They are cytosolic and expressed throughout the parasite cycle with the exception of the stages found in the tsetse fly proventriculus, as shown by both immunofluorescence and live cell analysis upon endogenous tagging with YFP. Knock-down of both proteins in the developmental stage preceding these forms leads to striking modifications: cell elongation, cell cycle arrest and relocalization of the nucleus in a posterior position, all typical of processes acting in parasites found in the proventriculus region. When ALBA3 is over-expressed from an exogenous copy during infection, it interferes with the relocalization of the nucleus in proventricular parasites. This is not observed for ALBA4 over-expression that does not visibly impede differentiation. Both ALBA3/4 proteins react to starvation conditions by accumulating in cytoplasmic stress granules together with DHH1, a recognized RNA-binding protein. ALBA3/4 proteins also partially colocalize with granules formed by polyA+ RNA in these conditions. We propose that ALBA are involved in trypanosome differentiation processes where they control a subset of developmentally regulated transcripts. These processes involving ALBA3/4 are likely to result from the specific activation of sensing pathways. In the second part of the thesis, we identify novel flagellar proteins that could act in sensing mechanisms. Several protein candidates were selected from a proteomic analysis of intact flagella performed in the host laboratory. This work validates their flagellar localization with high success (85% of the proteins examined) and defines multiple different patterns of protein distribution in the flagellum. Two proteins are analyzed during development, one of them showing down-regulation in proventricular stages. The functional analysis of one novel flagellar membrane protein reveals its rapid dynamics within the flagellum but does not yield a visible phenotype in culture. This is coherent with sensory function that might not be needed in stable culture conditions, but could be required in natural conditions during development. In conclusion, this work adds new pieces to the puzzle of identifying molecular switches involved in developmental mRNA control and environmental sensing in trypanosome stages in the tsetse fly.Trypanosoma brucei ist ein digenetischer, eukaryotischer Parasit, der zwischen Säugetier und Tsetsefliege alterniert, in welchen er unterschiedliche Gewebe besiedelt. Er ist die Ursache für die Schlafkrankheit in Afrika südlich der Sahara. Der Lebenszyklus der Trypanosomen besteht aus mehr als neun Parasitenstadien, die eindeutig anhand ihrer Morphologie, ihres Metabolismus und der Positionierung ihrer DNA Organellen unterschieden werden können. Trypanosomen bleiben ausschließlich extrazellulär und kommen im Laufe ihres Infektionszyklus mit sich verändernden Umwelteinflüssen in Berührung, z. B. Temperaturschwankungen, Variation in vorhandenen Energiequellen, erhöhte Viskosität usw. In Übereinstimmung mit der anerkannten sensorischen Funktion die Cilien in Vielzellern ausüben, wurde für diese Rolle das strukturverwandte Flagellum in Trypanosomen vorgeschlagen. Die Erkennung wechselnder Umweltparameter ist der vermutliche Auslöser für Differenzierungsprozesse, die ein Entwicklungsstadium hervorbringen, welches am besten an die neue Umgebung angepasst ist. Dies wird durch eine Modifizierung der Genexpression erreicht, die in Trypanosomen fast ausschließlich auf posttranskriptioneller Ebene erfolgt. Diese Arbeit zeigt, dass die RNA bindenden Proteine ALBA3 und ALBA4 an der Differenzierung von Trypanosomen in der Tsetsefliege beteiligt sind. Immunfluoreszenzanalyse und Lebendvideomikroskopie von Zellen, die eine an YFP gekoppelte Variante der Proteine enthalten, haben gezeigt, dass sich ALBA3/4 im Zytosol befinden und dass sie in jedem Parasitenstadium exprimiert sind, mit Ausnahme derer, die im Proventrikel der Tsetsefliege zu finden sind. Das Herunterregulieren der Proteine in vorangehenden Stadien, führt zu markanten Veränderungen, die mit denjenigen, die in Parasiten im Proventrikel zu finden sind, vergleichbar sind: z. B. Verlängerung der Zelle, Zellzyklusarrest und Lokalisierung des Zellkerns in eine posteriore Position. Im Gegenteil dazu findet die Umpositionierung des Zellkerns nicht statt, wenn ALBA3 während der Entwicklung des Parasiten in der Tsetsefliege überexprimiert wird. Ein vergleichbarer Effekt wird mit ALBA4 Überexpression nicht erreicht, welches die Entwicklung nicht negativ zu beeinflussen scheint. Wenn Trypanosomen Hungerstress ausgesetzt sind, reichern sich beide ALBA Proteine zusammen mit DHH1, einem anerkannten RNA bindenden Protein, in zytoplasmatischen Aggregaten an, die nur teilweise mit denjenigen kolokalisieren, die durch polyA+ RNA in diesen Bedingungen verursacht werden. Diese Arbeit zeigt, dass ALBA Proteine eine wichtige Rolle in der Entwicklung von Trypanosomen spielen und legt nahe, dass sie an der entwicklungsbedingten Kontrolle eines Teils der mRNA Expression beteiligt sind. Der zweite Teil dieser Arbeit handelt von der Identifizierung neuer flagellarer Proteine, die eine sensorische Funktion haben könnten. Hierfür wurden mehrere Proteinkandidaten aus einer durchgeführten Proteomanalyse intakter Flagellen gewählt. Die vorliegende Arbeit bestätigt die flagellare Lokalisierung der Proteine mit großem Erfolg (85% der untersuchten Proteine) und zeigt, dass sie unterschiedliche Verteilungsmuster vorweisen. Zwei der Proteine werden während der Infektion des Parasiten in der Tsetsefliege untersucht, was aufdeckt, dass eines davon in den Stadien im Proventrikel herunterreguliert ist. Die Funktionsstudie eines neu identifizierten flagellaren Membranproteins weist seine schnelle Dynamik im Flagellum auf, führt jedoch zu keinem sichtbaren Phänotyp in Laborbedingungen. Diese Beobachtung passt zu der Annahme, dass Proteine mit sensorischer Funktion in stabilen Laborverhältnissen nicht essentiell sind aber eine wichtige Rolle während der Entwicklung des Parasiten in natürlichen Bedingungen spielen. Zusammenfassend fügt diese Arbeit Teile zum Puzzle der Identifizierung molekularer Schalter, die in Trypanosomenstadien in der Tsetsefliege an der mRNA Kontrolle und der Erkennung der Umwelt beteiligt sind

    Molecular bases of cytoskeleton plasticity during the Trypanosoma brucei parasite cycle.

    Get PDF
    International audienceAfrican trypanosomes are flagellated protozoan parasites responsible for sleeping sickness and transmitted by tsetse flies. The accomplishment of their parasite cycle requires adaptation to highly diverse environments. These transitions take place in a strictly defined order and are accompanied by spectacular morphological modifications in cell size, shape and positioning of organelles. To understand the molecular bases of these processes, parasites isolated from different tissues of the tsetse fly were analysed by immunofluorescence with markers for specific cytoskeleton components and by a new immunofluorescence-based assay for evaluation of the cell volume. The data revealed striking differences between proliferative stages found in the midgut or in the salivary glands and the differentiating stage occurring in the proventriculus. Cell proliferation was characterized by a significant increase in cell volume, by a pronounced cell elongation marked by microtubule extension at the posterior end, and by the production of a new flagellum similar to the existing one. In contrast, the differentiating stage found in the proventriculus does not display any increase in cell volume neither in cell length, but is marked by a profound remodelling of the posterior part of the cytoskeleton and by changes in molecular composition and/or organization of the flagellum attachment zone

    A new asymmetric division contributes to the continuous production of infective trypanosomes in the tsetse fly.

    Get PDF
    International audienceAfrican trypanosomes are flagellated protozoan parasites that cause sleeping sickness and are transmitted by the bite of the tsetse fly. To complete their life cycle in the insect, trypanosomes reach the salivary glands and transform into the metacyclic infective form. The latter are expelled with the saliva at each blood meal during the whole life of the insect. Here, we reveal a means by which the continuous production of infective parasites could be ensured. Dividing trypanosomes present in the salivary glands of infected tsetse flies were monitored by live video-microscopy and by quantitative immunofluorescence analysis using molecular markers for the cytoskeleton and for surface antigens. This revealed the existence of two distinct modes of trypanosome proliferation occurring simultaneously in the salivary glands. The first cycle produces two equivalent cells that are not competent for infection and are attached to the epithelium. This mode of proliferation is predominant at the early steps of infection, ensuring a rapid colonization of the glands. The second mode is more frequent at later stages of infection and involves an asymmetric division. It produces a daughter cell that matures into the infective metacyclic form that is released in the saliva, as demonstrated by the expression of specific molecular markers - the calflagins. The levels of these calcium-binding proteins increase exclusively in the new flagellum during the asymmetric division, showing the commitment of the future daughter cell to differentiation. The coordination of these two alternative cell cycles contributes to the continuous production of infective parasites, turning the tsetse fly into an efficient and long-lasting vector for African trypanosomes

    Flagellar adhesion in Trypanosoma brucei relies on interactions between different skeletal structures in the flagellum and cell body

    No full text
    International audienceThe Trypanosoma brucei flagellum is an essential organelle anchored along the surface of the cell body through a specialized structure called the flagellum attachment zone (FAZ). Adhesion relies on the interaction of the extracellular portion of two transmembrane proteins, FLA1 and FLA1BP. Here, we identify FLAM3 as a novel large protein associated with the flagellum skeleton whose ablation inhibits flagellum attachment. FLAM3 does not contain transmembrane domains and its flagellar localization matches closely, but not exactly, that of the paraflagellar rod, an extra-axonemal structure present in the flagellum. Knockdown of FLA1 or FLAM3 triggers similar defects in motility and morphogenesis, characterized by the assembly of a drastically reduced FAZ filament. FLAM3 remains associated with the flagellum skeleton even in the absence of adhesion or a normal paraflagellar rod. However, the protein is dispersed in the cytoplasm when flagellum formation is inhibited. By contrast, FLA1 remains tightly associated with the FAZ filament even in the absence of a flagellum. In these conditions, the extracellular domain of FLA1 points to the cell surface. FLAM3 is essential for proper distribution of FLA1BP, which is restricted to the most proximal portion of the flagellum upon knockdown of FLAM3. We propose that FLAM3 is a key component of the FAZ connectors that link the axoneme to the adhesion zone, hence it acts in an equivalent manner to the FAZ filament complex, but on the side of the flagellum

    Novel insights into RNP granules by employing the trypanosome's microtubule skeleton as a molecular sieve

    Get PDF
    RNP granules are ribonucleoprotein assemblies that regulate the post-transcriptional fate of mRNAs in all eukaryotes. Their exact function remains poorly understood, one reason for this is that RNP granule purification has not yet been achieved. We have exploited a unique feature of trypanosomes to prepare a cellular fraction highly enriched in starvation stress granules. First, granules remain trapped within the cage-like, subpellicular microtubule array of the trypanosome cytoskeleton while soluble proteins are washed away. Second, the microtubules are depolymerized and the granules are released. RNA sequencing combined with single molecule mRNA FISH identified the short and highly abundant mRNAs encoding ribosomal mRNAs as being excluded from granules. By mass spectrometry we have identified 463 stress granule candidate proteins. For 17/49 proteins tested by eYFP tagging we have confirmed the localization to granules, including one phosphatase, one methyltransferase and two proteins with a function in trypanosome life-cycle regulation. The novel method presented here enables the unbiased identification of novel RNP granule components, paving the way towards an understanding of RNP granule function

    Unexpected plasiticty in the life cycle of Trypanosoma brucei

    No full text
    African trypanosomes cause sleeping sickness in humans and nagana in cattle. These unicellular parasites are transmitted by the bloodsucking tsetse fly. In the mammalian host’s circulation, proliferating slender stage cells differentiate into cell cycle-arrested stumpy stage cells when they reach high population densities. This stage transition is thought to fulfil two main functions: first, it auto-regulates the parasite load in the host; second, the stumpy stage is regarded as the only stage capable of successful vector transmission. Here, we show that proliferating slender stage trypanosomes express the mRNA and protein of a known stumpy stage marker, complete the complex life cycle in the fly as successfully as the stumpy stage, and require only a single parasite for productive infection. These findings suggest a reassessment of the traditional view of the trypanosome life cycle. They may also provide a solution to a long-lasting paradox, namely the successful transmission of parasites in chronic infections, despite low parasitemia

    Quantitative proteomics uncovers novel factors involved in developmental differentiation of Trypanosoma brucei

    Get PDF
    Developmental differentiation is a universal biological process that allows cells to adapt to different environments to perform specific functions. African trypanosomes progress through a tightly regulated life cycle in order to survive in different host environments when they shuttle between an insect vector and a vertebrate host. Transcriptomics has been useful to gain insight into RNA changes during stage transitions; however, RNA levels are only a moderate proxy for protein abundance in trypanosomes. We quantified 4270 protein groups during stage differentiation from the mammalian-infective to the insect form and provide classification for their expression profiles during development. Our label-free quantitative proteomics study revealed previously unknown components of the differentiation machinery that are involved in essential biological processes such as signaling, posttranslational protein modifications, trafficking and nuclear transport. Furthermore, guided by our proteomic survey, we identified the cause of the previously observed differentiation impairment in the histone methyltransferase DOT1B knock-out strain as it is required for accurate karyokinesis in the first cell division during differentiation. This epigenetic regulator is likely involved in essential chromatin restructuring during developmental differentiation, which might also be important for differentiation in higher eukaryotic cells. Our proteome dataset will serve as a resource for detailed investigations of cell differentiation to shed more light on the molecular mechanisms of this process in trypanosomes and other eukaryotes

    A quorum sensing-independent path to stumpy development in <i>Trypanosoma brucei</i>

    No full text
    <div><p>For persistent infections of the mammalian host, African trypanosomes limit their population size by quorum sensing of the parasite-excreted stumpy induction factor (SIF), which induces development to the tsetse-infective stumpy stage. We found that besides this cell density-dependent mechanism, there exists a second path to the stumpy stage that is linked to antigenic variation, the main instrument of parasite virulence. The expression of a second variant surface glycoprotein (VSG) leads to transcriptional attenuation of the VSG expression site (ES) and immediate development to tsetse fly infective stumpy parasites. This path is independent of SIF and solely controlled by the transcriptional status of the ES. In pleomorphic trypanosomes varying degrees of ES-attenuation result in phenotypic plasticity. While full ES-attenuation causes irreversible stumpy development, milder attenuation may open a time window for rescuing an unsuccessful antigenic switch, a scenario that so far has not been considered as important for parasite survival.</p></div
    corecore