32 research outputs found
A novel mechanism of colon carcinoma cell adhesion to the endothelium triggered by beta 1 integrin chain.
We have found a monoclonal antibody, called BV7, that rapidly stimulated by 6-10-folds HT-29 colon carcinoma cell adhesion to resting human umbilical vein endothelial cells. This effect was directed to tumor cells and not to endothelial cells and was cell-specific. BV7 was also active on the HCCP-2998 but did not change adhesion to endothelial cells of other tumor cells (MG63 osteosarcoma, A375 melanoma, MHCC-1410 and Lovo colon carcinoma) even if, by flow cytometry, this monoclonal antibody could bind to them. Additionally, BV7 effect was substratum-specific, since it did not increase but rather blocked HT-29 adhesion to matrix proteins. Immunoprecipitation analysis and binding to specific transfectants revealed that BV7 recognizes beta 1-subunit of integrin receptors and antibody blocking experiments showed that alpha 2 beta 1 antibodies were able to counteract BV7 effect on HT-29 adhesion to endothelial cells. In contrast, antibodies directed to other integrins or endothelial adhesive receptors (E- and P-selectin, VCAM-1, ICAM-1, ICAM-2) were ineffective. Induction of HT-29 adhesion to endothelial cells by BV7 was Fc- and protein synthesis-independent but required metabolically active cells. The presence of physiological concentrations of divalent cations and of cytoskeletal integrity was not needed. Comparative studies with eight different prototypic beta 1 antibodies showed that five of them induced HT-29 adhesion to endothelial cells in a way unrelated to their ability to interfere with HT-29 adhesion to matrix proteins. Cross-blocking binding assays demonstrated that all the five antibodies recognized a topographically related epitope. Taken together these results provide evidence that beta 1 antibodies may trigger a novel pathway of HT-29 colon carcinoma adhesion to endothelial cells with different features in respect to other described mechanisms of tumor cell interaction with the endothelium
ECM deposition is driven by caveolin-1-dependent regulation of exosomal biogenesis and cargo sorting.
The composition and physical properties of the extracellular matrix (ECM) critically influence tumor progression, but the molecular mechanisms underlying ECM layering are poorly understood. Tumor-stroma interaction critically depends on cell communication mediated by exosomes, small vesicles generated within multivesicular bodies (MVBs). We show that caveolin-1 (Cav1) centrally regulates exosome biogenesis and exosomal protein cargo sorting through the control of cholesterol content at the endosomal compartment/MVBs. Quantitative proteomics profiling revealed that Cav1 is required for exosomal sorting of ECM protein cargo subsets, including Tenascin-C (TnC), and for fibroblast-derived exosomes to efficiently deposit ECM and promote tumor invasion. Cav1-driven exosomal ECM deposition not only promotes local stromal remodeling but also the generation of distant ECM-enriched stromal niches in vivo. Cav1 acts as a cholesterol rheostat in MVBs, determining sorting of ECM components into specific exosome pools and thus ECM deposition. This supports a model by which Cav1 is a central regulatory hub for tumor-stroma interactions through a novel exosome-dependent ECM deposition mechanism.This study was supported by the Ministerio de Ciencia, Innovación y Universidades (CSD2009-0016, SAF2014-51876-R, SAF2017-83130-R, BFU2016-81912-REDC, and IGP-SO-MINSEV1512-07-2016); the Fundació La Marató de TV3 (385/C/2019); the Worldwide Cancer Research Foundation (AICR 15-0404); and Fondo Europeo de Desarrollo Regional “Una manera de hacer Europa” (to M.Á. del Pozo). M.Á. del Pozo’s group received funding from the European Union Horizon 2020 research and innovation program under Marie Sklodowska-Curie grant agreement no. 641639. M.Á. del Pozo is a member of the Tec4Bio consortium (ref. S2018/NMT4443; Actividades de I+D entre Grupos de Investigación en Tecnologías, Comunidad Autónoma de Madrid/FEDER, Spain). J. Balsinde was supported by Ministerio de Ciencia, Innovación y Universidades grants SAF2013-48201-R and SAF2016-80883-R, and G. Orend was supported by Institut National de la Santé et de la Recherche Médicale, the University of Strasbourg, the Ligue Contre le Cancer, and the Institut National du Cancer (ref. TENPLAMET). L. Albacete-Albacete was supported by a Ministerio de Ciencia, Innovación y Universidades predoctoral fellowship associated with the Severo Ochoa Excellence program (ref. SVP-2013-06789). I. Navarro-Lérida was supported by a postdoctoral fellowship from the Asociación Española Contra el Cáncer (ref. INVES191NAVA). The Centro Nacional de Investigaciones Cardiovasculares Carlos III is supported by the Ministerio de Ciencia e Innovación and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (SEV-2015-0505).S
Human Haemato-Endothelial Precursors: Cord Blood CD34+ Cells Produce Haemogenic Endothelium
Embryologic and genetic evidence suggest a common origin of haematopoietic and endothelial lineages. In the murine embryo, recent studies indicate the presence of haemogenic endothelium and of a common haemato-endothelial precursor, the haemangioblast. Conversely, so far, little evidence supports the presence of haemogenic endothelium and haemangioblasts in later stages of development. Our studies indicate that human cord blood haematopoietic progenitors (CD34+45+144-), triggered by murine hepatocyte conditioned medium, differentiate into adherent proliferating endothelial precursors (CD144+CD105+CD146+CD31+CD45-) capable of functioning as haemogenic endothelium. These cells, proven to give rise to functional vasculature in vivo, if further instructed by haematopoietic growth factors, first switch to transitional CD144+45+ cells and then to haematopoietic cells. These results highlight the plasticity of haemato-endhothelial precursors in human post-natal life. Furthermore, these studies may provide highly enriched populations of human post-fetal haemogenic endothelium, paving the way for innovative projects at a basic and possibly clinical level. \uc2\ua9 2012 Pelosi et al
The Life Span Determinant p66Shc Localizes to Mitochondria Where It Associates with Mitochondrial Heat Shock Protein 70 and Regulates Trans-membrane Potential
P66Shc regulates life span in mammals and is a critical component of the apoptotic response to oxidative stress. It functions as a downstream target of the tumor suppressor p53 and is indispensable for the ability of oxidative stress-activated p53 to induce apoptosis. The molecular mechanisms underlying the apoptogenic effect of p66Shc are unknown. Here we report the following three findings. (i) The apoptosome can be properly activated in vitro in the absence of p66Shc only if purified cytochrome c is supplied. (ii) Cytochrome c release after oxidative signals is impaired in the absence of p66Shc. (iii) p66Shc induces the collapse of the mitochondrial trans-membrane potential after oxidative stress. Furthermore, we showed that a fraction of cytosolic p66Shc localizes within mitochondria where it forms a complex with mitochondrial Hsp70. Treatment of cells with ultraviolet radiation induced the dissociation of this complex and the release of monomeric p66Shc. We propose that p66Shc regulates the mitochondrial pathway of apoptosis by inducing mitochondrial damage after dissociation from an inhibitory protein complex. Genetic and biochemical evidence suggests that mitochondria regulate life span through their effects on the energetic metabolism (mitochondrial theory of aging). Our data suggest that mitochondrial regulation of apoptosis might also contribute to life span determination
Evidence of Distinct Tumour-Propagating Cell Populations with Different Properties in Primary Human Hepatocellular Carcinoma
Increasing evidence that a number of malignancies are characterised by tumour cell heterogeneity has recently been published, but there is still a lack of data concerning liver cancers. The aim of this study was to investigate and characterise tumour-propagating cell (TPC) compartments within human hepatocellular carcinoma (HCC).After long-term culture, we identified three morphologically different tumour cell populations in a single HCC specimen, and extensively characterised them by means of flow cytometry, fluorescence microscopy, karyotyping and microarray analyses, single cell cloning, and xenotransplantation in NOD/SCID/IL2Rγ/⁻ mice.The primary cell populations (hcc-1, -2 and -3) and two clones generated by means of limiting dilutions from hcc-1 (clone-1/7 and -1/8) differently expressed a number of tumour-associated stem cell markers, including EpCAM, CD49f, CD44, CD133, CD56, Thy-1, ALDH and CK19, and also showed different doubling times, drug resistance and tumorigenic potential. Moreover, we found that ALDH expression, in combination with CD44 or Thy-1 negativity or CD56 positivity identified subpopulations with a higher clonogenic potential within hcc-1, hcc-2 and hcc-3 primary cell populations, respectively. Karyotyping revealed the clonal evolution of the cell populations and clones within the primary tumour. Importantly, the primary tumour cell population with the greatest tumorigenic potential and drug resistance showed more chromosomal alterations than the others and contained clones with epithelial and mesenchymal features.Individual HCCs can harbor different self-renewing tumorigenic cell types expressing a variety of morphological and phenotypical markers, karyotypic evolution and different gene expression profiles. This suggests that the models of hepatic carcinogenesis should take into account TPC heterogeneity due to intratumour clonal evolution
Spontaneous Cell Fusion of Acute Leukemia Cells and Macrophages Observed in Cells with Leukemic Potential
Cell fusion plays a well-recognized physiological role during development, while its function during progression is still unclear. Here, we show that acute myeloid leukemia (AML) cells spontaneously fused with murine host cells in vivo. AML cells fused in most cases with mouse macrophages. Other targets of AML cell fusion were dendritic and endothelial cells. Cytogenetic and molecular analysis revealed that successive recipients conserved detectable amounts of parental DNA. Moreover, in a mouse AML1-ETO model where female AML1-ETO-leukemic cells, expressing CD45.2, were injected in congenic CD45.1 male mice AML cells, we found hybrid cells expressing both allelic types of CD45 and XXY set of sexual chromosomes. More importantly, the fusion protein AML1-ETO was transferred in the hybrid cells. When sorted hybrid cells were reinjected in a secondary recipient, they gave rise to leukemia with 100% penetrance and similar time of onset of leukemic cells. Our data indicate that in vivo fusion of cancer cells with host cells may be a mechanism of gene transfer for cancer dissemination and suggest that fused cells may be used to identify still unrecognized leukemogenic genes that are conserved in hybrid cells and able to perpetuate leukemia in vivo