31 research outputs found

    The impact of tethered recording techniques on activity and sleep patterns in rats

    Get PDF
    Funding Information: The project was supported by grants of Deutsche Forschungsgemeinschaft (FOR 2591, GZ: PO681/9-1 and 9-2). The authors thank Sarah Glisic, Helen Stirling, Claudia Siegl, Sieglinde Fischlein, Andreas Kutschka and Isabella Waclawczyk for their excellent technical assistance. The authors thank Helen Stirling for language revision. Open Access funding enabled and organized by Projekt DEALPeer reviewedPublisher PD

    Insect haptoelectrical stimulation of Venus flytrap triggers exocytosis in gland cells

    Get PDF
    The Venus flytrap Dionaea muscipula captures insects and consumes their flesh. Prey contacting touch-sensitive hairs trigger traveling electrical waves. These action potentials (APs) cause rapid closure of the trap and activate secretory functions of glands, which cover its inner surface. Such prey-induced haptoelectric stimulation activates the touch hormone jasmonate (JA) signaling pathway, which initiates secretion of an acidic hydrolase mixture to decompose the victim and acquire the animal nutrients. Although postulated since Darwin’s pioneering studies, these secretory events have not been recorded so far. Using advanced analytical and imaging techniques, such as vibrating ion-selective electrodes, carbon fiber amperometry, and magnetic resonance imaging, we monitored stimulus-coupled glandular secretion into the flytrap. Trigger-hair bending or direct application of JA caused a quantal release of oxidizable material from gland cells monitored as distinct amperometric spikes. Spikes reminiscent of exocytotic events in secretory animal cells progressively increased in frequency, reaching steady state 1 d after stimulation. Our data indicate that trigger-hair mechanical stimulation evokes APs. Gland cells translate APs into touch-inducible JA signaling that promotes the formation of secretory vesicles. Early vesicles loaded with Hâș and Cl⁻ fuse with the plasma membrane, hyperacidifying the “green stomach”-like digestive organ, whereas subsequent ones carry hydrolases and nutrient transporters, together with a glutathione redox moiety, which is likely to act as the major detected compound in amperometry. Hence, when glands perceive the haptoelectrical stimulation, secretory vesicles are tailored to be released in a sequence that optimizes digestion of the captured animal

    Methods of staining and visualization of sphingolipid enriched and non-enriched plasma membrane regions of Arabidopsis thaliana with fluorescent dyes and lipid analogues

    Get PDF
    Background: Sterols and Sphingolipids form lipid clusters in the plasma membranes of cell types throughout the animal and plant kingdoms. These lipid domains provide a medium for protein signaling complexes at the plasma membrane and are also observed to be principal regions of membrane contact at the inception of infection. We visualized different specific fluorescent lipophilic stains of the both sphingolipid enriched and non-sphingolipid enriched regions in the plasma membranes of live protoplasts of Arabidopsis thaliana. Results: Lipid staining protocols for several fluorescent lipid analogues in plants are presented. The most emphasis was placed on successful protocols for the single and dual staining of sphingolipid enriched regions and exclusion of sphingolipid enriched regions on the plasma membrane of Arabidopsis thaliana protoplasts. A secondary focus was placed to ensure that these staining protocols presented still maintain cell viability. Furthermore, the protocols were successfully tested with the spectrally sensitive dye Laurdan. Conclusion: Almost all existing staining procedures of the plasma membrane with fluorescent lipid analogues are specified for animal cells and tissues. In order to develop lipid staining protocols for plants, procedures were established with critical steps for the plasma membrane staining of Arabidopsis leaf tissue and protoplasts. The success of the plasma membrane staining protocols was additionally verified by measurements of lipid dynamics by the fluorescence recovery after photobleaching technique and by the observation of new phenomena such as time dependent lipid polarization events in living protoplasts, for which a putative physiological relevance is suggested

    Influence of the sevoflurane concentration on the occurrence of epileptiform EEG patterns.

    Get PDF
    OBJECTIVES AND AIM: This study was performed to analyse the effects of different sevoflurane concentrations on the incidence of epileptiform EEG activity during induction of anaesthesia in children in the clinical routine. BACKGROUND: It was suggested in the literature to use sevoflurane concentrations lower than 8% to avoid epileptiform activity during induction of anaesthesia in children. METHODS: 100 children (age: 4.6±3.0 years, ASA I-III, premedication with midazolam) were anaesthetized with 8% sevoflurane for 3 min or 6% sevoflurane for 5 min in 100% O2 via face mask followed by 4% sevoflurane until propofol and remifentanil were given for intubation. EEGs were recorded continuously and were analysed visually with regard to epileptiform EEG patterns. RESULTS: From start of sevoflurane until propofol/remifentanil administration, 38 patients (76%) with 8% sevoflurane had epileptiform EEG patterns compared to 26 patients (52%) with 6% (p = 0.0106). Epileptiform potentials tended to appear later in the course of the induction with 6% than with 8%. Up to an endtidal concentration of 6% sevoflurane, the number of children with epileptiform potentials was similar in both groups (p = 0.3708). The cumulative number of children with epileptiform activity increased with increasing endtidal sevoflurane concentrations. The time from start of sevoflurane until loss of consciousness was similar in patients with 8% and 6% sevoflurane (42.2±17.5 s vs. 44.9 s ±14.0 s; p = 0.4073). An EEG stage of deep anaesthesia with continuous delta waves <2.0 Hz appeared significantly earlier in the 8% than in the 6% group (64.0±22.2 s vs. 77.9±20.0 s, p = 0.0022). CONCLUSION: The own analysis and data from the literature show that lower endtidal concentrations of sevoflurane and shorter administration times can be used to reduce epileptiform activity during induction of sevoflurane anaesthesia in children

    Methods of staining and visualization of sphingolipid enriched and non-enriched plasma membrane regions of <it>Arabidopsis thaliana</it> with fluorescent dyes and lipid analogues

    No full text
    Abstract Background Sterols and Sphingolipids form lipid clusters in the plasma membranes of cell types throughout the animal and plant kingdoms. These lipid domains provide a medium for protein signaling complexes at the plasma membrane and are also observed to be principal regions of membrane contact at the inception of infection. We visualized different specific fluorescent lipophilic stains of the both sphingolipid enriched and non-sphingolipid enriched regions in the plasma membranes of live protoplasts of Arabidopsis thaliana. Results Lipid staining protocols for several fluorescent lipid analogues in plants are presented. The most emphasis was placed on successful protocols for the single and dual staining of sphingolipid enriched regions and exclusion of sphingolipid enriched regions on the plasma membrane of Arabidopsis thaliana protoplasts. A secondary focus was placed to ensure that these staining protocols presented still maintain cell viability. Furthermore, the protocols were successfully tested with the spectrally sensitive dye Laurdan. Conclusion Almost all existing staining procedures of the plasma membrane with fluorescent lipid analogues are specified for animal cells and tissues. In order to develop lipid staining protocols for plants, procedures were established with critical steps for the plasma membrane staining of Arabidopsis leaf tissue and protoplasts. The success of the plasma membrane staining protocols was additionally verified by measurements of lipid dynamics by the fluorescence recovery after photobleaching technique and by the observation of new phenomena such as time dependent lipid polarization events in living protoplasts, for which a putative physiological relevance is suggested.</p

    The Venus flytrap attracts insects by the release of volatile organic compounds

    Get PDF
    Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster. The VOCs emitted by the plant were further analysed by GC-MS and proton transfer reaction-mass spectrometry (PTR-MS). The bioassays documented that Drosophila was strongly attracted by the carnivorous plant. Over 60 VOCs, including terpenes, benzenoids, and aliphatics, were emitted by Dionaea, predominantly in the light. This work further tested whether attraction of animal prey is affected by the nutritional status of the plant. For this purpose, Dionaea plants were fed with insect biomass to improve plant N status. However, although such feeding altered the VOC emission pattern by reducing terpene release, the attraction of Drosophila was not affected. From these results it is concluded that Dionaea attracts insects on the basis of food smell mimicry because the scent released has strong similarity to the bouquet of fruits and plant flowers. Such a volatile blend is emitted to attract insects searching for food to visit the deadly capture organ of the Venus flytrap

    Number and percentage of patients without and with epileptiform activity in section A (start of sevoflurane until beginning of propofol bolus), (p = 0.0106).

    No full text
    <p>Number and percentage of patients without and with epileptiform activity in section A (start of sevoflurane until beginning of propofol bolus), (p = 0.0106).</p

    Endtidal sevoflurane concentrations before the first second with epileptiform activity and cumulative number of patients (%) with epileptiform potentials in section A (start of sevoflurane until start of propofol bolus).

    No full text
    <p>Endtidal sevoflurane concentrations before the first second with epileptiform activity and cumulative number of patients (%) with epileptiform potentials in section A (start of sevoflurane until start of propofol bolus).</p

    Number and percentage of patients who had 0, 1–2, 3–9 or >9 s with epileptiform activity in section A (start of sevoflurane until beginning of propofol bolus), (p = 0.0393).

    No full text
    <p>Number and percentage of patients who had 0, 1–2, 3–9 or >9 s with epileptiform activity in section A (start of sevoflurane until beginning of propofol bolus), (p = 0.0393).</p

    Number and percentage of patients with epileptiform EEG patterns in section A (start of sevoflurane until beginning of propofol bolus) and B (start of propofol bolus until end of burst suppression).

    No full text
    <p>Number and percentage of patients with epileptiform EEG patterns in section A (start of sevoflurane until beginning of propofol bolus) and B (start of propofol bolus until end of burst suppression).</p
    corecore