211 research outputs found

    A Parallel General Purpose Multi-Objective Optimization Framework, with Application to Beam Dynamics

    Full text link
    Particle accelerators are invaluable tools for research in the basic and applied sciences, in fields such as materials science, chemistry, the biosciences, particle physics, nuclear physics and medicine. The design, commissioning, and operation of accelerator facilities is a non-trivial task, due to the large number of control parameters and the complex interplay of several conflicting design goals. We propose to tackle this problem by means of multi-objective optimization algorithms which also facilitate a parallel deployment. In order to compute solutions in a meaningful time frame a fast and scalable software framework is required. In this paper, we present the implementation of such a general-purpose framework for simulation-based multi-objective optimization methods that allows the automatic investigation of optimal sets of machine parameters. The implementation is based on a master/slave paradigm, employing several masters that govern a set of slaves executing simulations and performing optimization tasks. Using evolutionary algorithms as the optimizer and OPAL as the forward solver, validation experiments and results of multi-objective optimization problems in the domain of beam dynamics are presented. The high charge beam line at the Argonne Wakefield Accelerator Facility was used as the beam dynamics model. The 3D beam size, transverse momentum, and energy spread were optimized

    Quark mean field model with density dependent couplings for finite nuclei

    Get PDF
    The quark mean field model, which describes the nucleon using the constituent quark model, is applied to investigate the properties of finite nuclei. The couplings of the scalar and vector mesons with quarks are made density dependent through direct coupling to the scalar field so as to reproduce the relativistic Brueckner-Hartree-Fock results of nuclear matter. The present model provides satisfactory results on the properties of spherical nuclei, and predicts an increasing size of the nucleon as well as a reduction of the nucleon mass in the nuclear environmentComment: 8 pages, REVTeX, 8 ps figures, accepted for publication in Phys. Rev.

    Neutron star properties with relativistic equations of state

    Get PDF
    We study the properties of neutron stars adopting relativistic equations of state of neutron star matter, calculated in the framework of the relativistic Brueckner-Hartree-Fock approximation for electrically charge neutral neutron star matter in beta-equilibrium. For higher densities more baryons (hyperons etc.) are included by means of the relativistic Hartree- or Hartree-Fock approximation. The special features of the different approximations and compositions are discussed in detail. Besides standard neutron star properties special emphasis is put on the limiting periods of neutron stars, for which the Kepler criterion and gravitation-reaction instabilities are considered. Furthermore the cooling behaviour of neutron stars is investigated, too. For comparison we give also the outcome for some nonrelativistic equations of state.Comment: 43 pages, 22 ps-figures, to be published in the International Journal of Modern Physics

    In vivo MRI is sensitive to remyelination in a nonhuman primate model of multiple sclerosis

    Get PDF
    Remyelination is crucial to recover from inflammatory demyelination in multiple sclerosis (MS). Investigating remyelination in vivo using magnetic resonance imaging (MRI) is difficult in MS, where collecting serial short-interval scans is challenging. Using experimental autoimmune encephalomyelitis (EAE) in common marmosets, a model of MS that recapitulates focal cerebral inflammatory demyelinating lesions, we investigated whether MRI is sensitive to, and can characterize, remyelination. In six animals followed with multisequence 7 T MRI, 31 focal lesions, predicted to be demyelinated or remyelinated based on signal intensity on proton density-weighted images, were subsequently assessed with histopathology. Remyelination occurred in four of six marmosets and 45% of lesions. Radiological-pathological comparison showed that MRI had high statistical sensitivity (100%) and specificity (90%) for detecting remyelination. This study demonstrates the prevalence of spontaneous remyelination in marmoset EAE and the ability of in vivo MRI to detect it, with implications for preclinical testing of pro-remyelinating agents

    Deflating the deep brain stimulation causes personality changes bubble: the authors reply

    Get PDF
    To conclude that there is enough or not enough evidence demonstrating that deep brain stimulation (DBS) causes unintended postoperative personality changes is an epistemic problem that should be answered on the basis of established, replicable, and valid data. If prospective DBS recipients delay or refuse to be implanted because they are afraid of suffering from personality changes following DBS, and their fears are based on unsubstantiated claims made in the neuroethics literature, then researchers making these claims bear great responsibility for prospective recipients' medical decisions and subsequent well-being. Our article “Deflating the ‘DBS causes personality’ bubble” reported an increase in theoretical neuroethics publications suggesting putative DBS-induced changes to personality, identity, agency, autonomy, authenticity and/or self (PIAAAS) and a critical lack of supporting primary empirical studies. This special issue of Neuroethics brings together responses to our initial publication, with our own counter-responses organized according to common themes. We provide a brief summary for each commentary and its main criticisms as well as a discussion of the way in which these responses can: 1) help clarify the meaning of PIAAAS, suggesting supplementary frameworks for understanding the impact of DBS on PIAAAS; 2) provide further empirical evidence of PIAAAS by presenting results from the researchers’ own work; and/or 3) offer a critique of our research approach and/or findings. Unintended postoperative putative changes to PIAAAS remain a critical ethical concern. It is beyond dispute that we need to develop reliable empirical and conceptual instruments able to measure complex cognitive, affective, and behavioural changes in order to investigate whether they are attributable to DBS alone

    Routes to achieving sustainable intensification in simulated dairy farms: The importance of production efficiency and complimentary land uses

    Get PDF
    1.Sustainable intensification (SI) is a global challenge, aiming to increase food production whilst conserving biodiversity and ecosystem services. This is contrary to the observed trend of agricultural intensification degrading environmental quality. We developed a framework integrating animal nutrition, crop yields, and biodiversity modelling to explore SI potential in multiple model dairy farming systems through varying crop composition to provide cattle feed rations. We then identified key drivers of biodiversity gain that may be applicable at a wider scale. 2.We developed multiple feed rations to meet the nutritional demands of a high-yielding, housed dairy herd. The land area required varied due to productivity and nutritional differences between crops, generating spare land. We used published biodiversity models to compare alpha- and beta-diversity of spiders and plants across 36 scenarios that used the spare land in different ways, for either biodiversity maximisation or additional production. 3.Alpha and beta-diversity for both taxa was greatest in scenarios that maximised spare land and utilised this for species-rich extensive grassland. However, commensurate biodiversity gains for plant alpha-diversity, and spider and plant beta-diversity (respectively 100%, 76% and 86% gain relative to that optimal scenario) were achievable when spare land was used for additional crop production. 4.Maximising compositional heterogeneity and adding complementary productive land uses to spared land were key to increasing production and beta-diversity, while adding species-rich productive land uses drove increasing production and alpha-diversity. 5.Synthesis and applications. This study indicates the potential for SI of dairy farming through manipulating feed rations to increase land-efficiency and spare land, which could then be used to enhance production and biodiversity. The optimum land composition depends on target goal(s) (e.g. maximising production and/or biodiversity). Greatest ‘win-wins’ were achieved through increasing land cover heterogeneity and selecting crops that complement each other in the species they support, highlighting the important role of heterogeneity in the crop matrix. Our study provides a framework that integrates production efficiency and biodiversity modelling to explore potential routes to achieve SI goals

    Application of the density dependent hadron field theory to neutron star matter

    Get PDF
    The density dependent hadron field (DDRH) theory, previously applied to isospin nuclei and hypernuclei is used to describe β\beta-stable matter and neutron stars under consideration of the complete baryon octet. The meson-hyperon vertices are derived from Dirac-Brueckner calculations of nuclear matter and extended to hyperons. We examine properties of density dependent interactions derived from the Bonn A and from the Groningen NN potential as well as phenomenological interactions. The consistent treatment of the density dependence introduces rearrangement terms in the expression for the baryon chemical potential. This leads to a more complex condition for the β\beta-equilibrium compared to standard relativistic mean field (RMF) approaches. We find a strong dependence of the equation of state and the particle distribution on the choice of the vertex density dependence. Results for neutron star masses and radii are presented. We find a good agreement with other models for the maximum mass. Radii are smaller compared to RMF models and indicate a closer agreement with results of non-relativistic Brueckner calculations.Comment: 28 pages, 11 figure

    Nuclei, Superheavy Nuclei and Hypermatter in a chiral SU(3)-Modell

    Full text link
    A model based on chiral SU(3)-symmetry in nonlinear realisation is used for the investigation of nuclei, superheavy nuclei, hypernuclei and multistrange nuclear objects (so called MEMOs). The model works very well in the case of nuclei and hypernuclei with one Lambda-particle and rules out MEMOs. Basic observables which are known for nuclei and hypernuclei are reproduced satisfactorily. The model predicts Z=120 and N=172, 184 and 198 as the next shell closures in the region of superheavy nuclei. The calculations have been performed in self-consistent relativistic mean field approximation assuming spherical symmetry. The parameters were adapted to known nuclei.Comment: 19 pages, 11 figure
    corecore