21 research outputs found
Kajian Koefisien Limpasan Hujan Cekungan Kecil Berdasarkan Model Infiltasi Empirik Untuk DAS Bagian Hulu (Kasus Pada Cekungan Kecil Cikumutuk DAS Cimanuk Hulu)
. Cumulative infiltrate calculated by F(t)= f(t).t. Rate of infiltrate (f(t)) is function of initial soil moisture (2), content of rapid and slow drainage pores ( ηc and ηl); and duration and probability of rain (t and p). Value of F (t) (mm) ever greater by increasing rain duration and smaller rain probability. This value range from 1,59 - 20,50 for the second crops; 1,88 - 21,23 for the agro forestry; 1,36 - 17,84 for the non arable land; 1,11 - 23,88 for the forest; and 1,28 - 22,59 for the settlement. The real runoff coefficient of small basin (C) is comparison between empirical run off (ROempirik) with the model run off (ROC). The Coefficient C model (CM) had formulated as with H = (9,16 + 6,61.t). At low rainfall (< 4 mm), the CM is small (< 0.30); at bigger rainfall (> 6 - 24 mm) the value of CM is higher (0.30 - 0.60); and at rainfall > 24 mm CM is tend to go constantly. The value of (1-CM) indicate proportion of ROC which storage in the forms interception by plant, micro basin on the land surface, or artificial reservoirs. That is around 40 % of ROC
Effectiveness Analysis of Canal Blocking in Sub-peatland Hydrological Unit 5 and 6 Kahayan Sebangau, Central Kalimantan, Indonesia
The height of canal blocking has a significant influence on re-wetting peatland, depending on the canal’s distance. An effective canal in good condition has to raise the groundwater table to -0.4 m below ground level according to the Indonesian Ministry of Environment and Forestry (MENLHK). The effectiveness of different canal blockings was modeled by Freewat software with variation of canal distance (200 m, 250 m, 300 m, 350 m, and 400 m) and blocking height (0.2 m, 0.3 m, 0.4 m, 0.5 m, 0.6 m). This simulation was carried out using recharge and evapotranspiration data covering 20 years. The input of the conductivity value was done using 50 m/day according to the calibration. From the modeling, 0.6 m high canal blockings give a satisfactory result at every canal distance. The study took place during the annual dry season, when recharge was almost zero and average evapotranspiration was 6 mm/day. Adjusting the canal blocking to a maximum of 0.6 m and the canal distance to 400 m, the groundwater table slowly rose 0.38 m and it took 30 days to reach full-re-wetting capacity. This study revealed that the effectiveness of canal blocking is directly related to evapotranspiration and recharge, which has a positive correlation with the groundwater rise and the re-wetting period
Perbandingan Beberapa Formula Perhitungan Gerusan Di Sekitar Pilar (Kajian Laboratorium)
. River is water resources, which is important for humankind. The morphology of the river might to be straight or to be meander. A highway that cross a river needs a bridge. In the wide river, the bridge needs pillars to support it. Pillars that construct in the river need to have design criteria so that erosion that might be happened would not cause the pillars to be unstable. In this research, models of pillars in the river model were constructed in the Hydraulic Laboratory, Civil Engineering Departement ITB. Local Scours of the pillars were examined in the various discharges.The results were compared with several methods. The method of Colorado State University (CSU) is recomended in calculating the depth of the local scour in the reseach model condition
Simulasi Dampak Peningkatan Demand Terhadap Energi Listrik Dalam Pemodelan Pengoperasian Waduk Kaskade
. Increase of demand especially for raw water of non irrigation at this time is relatively uncontrollable systematically in spatial framework. This is becuase of the economic growth that stimulates urbanization rapicly and centralized in certain region. River basin as the hidrology region that support the sustainability of water resource is relatively constant and decrease from time to time affected by the river basin development without considering environmental aspect. Therefore, in order to utilize water resource for meeting energy and water demand, it is necessary to consider both interests in which the demand increase may affect the energy production and influence the sustainability of services for both interests based on the targets of the reservoir development. In this research, the model is developed in order to see the effect and the livel of significancy especially during dry period. On the other hand, the simulation has been carried out to analyze the trade off between energy production and water demand (irrigation and non irrigation) during dry period. This study is carried out in Cascade Citarum Reservoir (Saguling, Cirata dan Jatiluhur) in Citarum River Basin, West Java. Level of service will be the output of the trade off analysis between the interests of the energy production and water demand based on the each target. The model is solved by using Non Linear Programming (NLP) with Generalized Reduced Gradient (GRG) Method based on the the scenario of maximizing energy within different water demand (20%D, 40%D, 60%D, 80%D, 100%D, 110%D). The result of simulation model shows that the demand increase would affect the decrease of energy production and it is relatively significant especially during the dry period
Kajian Banjir dan Perubahan Dasar Sungai Banger Akibat Penutupan Regulator Gate, Kota Pekalongan, Provinsi Jawa Tengah
Dalam sistem pengembangan daerah Provinsi Jawa Tengah, Pemerintah provinsi menetapkan Kota Pekalongan sebagai salah satu wilayah strategis untuk pertumbuhan ekonomi. Meskipun memiliki potensi yang signifikan, Kota Pekalongan masih perlu mencari solusi untuk mengurangi banjir yang merupakan masalah berulang. Banjir di Kota Pekalongan disebabkan oleh gelombang pasang (rob) dan luapan banjir yang terjadi di sungai-sungai yang melintasi kota. Menurut Bappeda Kota Pekalongan, pada tahun 2020 terjadi genangan banjir seluas 1.177,86 hektar. Untuk mengatasi masalah banjir, pemerintah telah membuat beberapa infrastruktur pengendalian banjir di Kota Pekalongan, diantaranya regulator gate dan tanggul parapet. Pembangunan regulator gate ini bertujuan untuk mengatur aliran yang masuk ke sistem Sungai Loji, sehingga kedepannya seluruh aliran ke Sungai Banger sepenuhnya. Studi ini mensimulasikan banjir di wilayah Kota Pekalongan untuk menilai dampak pembangunan regulator gate dan tanggul sungai khususnya di sekitar Sungai Banger menggunakan HEC-RAS 6.4 dengan dibagi menjadi 4 skenario. Simulasi dilakukan dengan debit banjir periode ulang 25 tahun dan 50 tahun. Hasil studi ini menunjukkan area terkena banjir sebelum pembangunan regulator gate adalah 710,06 hektar, dan setelah pembangunan regulator gate, area banjir berkurang menjadi 363,02 hektar. Banjir yang tersisa terjadi di muara Sungai Banger, tetapi setelah normalisasi penambahan tanggul parapet dilakukan, banjir di Kota Pekalongan dapat diselesaikan
PENGARUH ARAH SAYAP PELIMPAH SAMPING DAN KEDALAMAN ALIRAN TERHADAP KOEFISIEN DEBIT
Side weir is a type of protection structure which function is to protect channels from damage caused by excessive amount of water (overtopping) so the water level in channels or rivers is to be preserved. The type is spatially varied flow with decrease of discharge occurs in main channels along the side weir. Usually design of spillway applies entrance of slope 900. Thus this reduces discharge coefficient. In this research, the influence entrance slope less than 900 was observed such as 600 and 300. The observation showed that discharge coefficient is function of entrance slope and ratio value of water depth to weir radius (h/r) with largest discharge coefficient around value (0.341 â 0.366) with entrance slope value (55.850 â 57.730). Abstract in Bahasa Indonesia : Pelimpah Samping (side weir) adalah bangunan untuk melindungi saluran dari kerusakan yang diakibatkan oleh jumlah air yang berlebihan (overtopping). Dengan dipasang pelimpah samping maka ketinggian air di saluran atau sungai tetap terjaga. Tipe aliran adalah aliran berubah lambat laun terhadap ruang (spatially varied flow) dengan penurunan debit yang terjadi di saluran utama sepanjang pelimpah. Selama ini pembangunan pelimpah samping menggunakan sudut masuk 900 terhadap aliran utama. Dengan demikian mempunyai kerugian yakni berkurangnya koefisien pengaliran. Dilain pihak asumsi koefisien pengaliran tersebut sampai sekarang tetap dianggap cukup besar. Pada penelitian ini diamati pengaruh sudut masuk sayap yang lebih kecil dari 900 yaitu sudut 600 dan 300. Hasil penelitian menunjukkan bahwa koefisien debit merupakan fungsi dari sudut masuk dan nilai perbandingan kedalaman air dan jari-jari pelimpah (h/r). Koefisien debit terbesar bernilai antara (0,341 â 0,366) pada sudut masuk antara (55,850- 57,730)
PENGARUH ARAH SAYAP PELIMPAH SAMPING DAN KEDALAMAN ALIRAN TERHADAP KOEFISIEN DEBIT
Side weir is a type of protection structure which function is to protect channels from damage caused by excessive amount of water (overtopping) so the water level in channels or rivers is to be preserved. The type is spatially varied flow with decrease of discharge occurs in main channels along the side weir. Usually design of spillway applies entrance of slope 900. Thus this reduces discharge coefficient. In this research, the influence entrance slope less than 900 was observed such as 600 and 300. The observation showed that discharge coefficient is function of entrance slope and ratio value of water depth to weir radius (h/r) with largest discharge coefficient around value (0.341 – 0.366) with entrance slope value (55.850 – 57.730).
Abstract in Bahasa Indonesia :
Pelimpah Samping (side weir) adalah bangunan untuk melindungi saluran dari kerusakan yang diakibatkan oleh jumlah air yang berlebihan (overtopping). Dengan dipasang pelimpah samping maka ketinggian air di saluran atau sungai tetap terjaga. Tipe aliran adalah aliran berubah lambat laun terhadap ruang (spatially varied flow) dengan penurunan debit yang terjadi di saluran utama sepanjang pelimpah. Selama ini pembangunan pelimpah samping menggunakan sudut masuk 900 terhadap aliran utama. Dengan demikian mempunyai kerugian yakni berkurangnya koefisien pengaliran. Dilain pihak asumsi koefisien pengaliran tersebut sampai sekarang tetap dianggap cukup besar. Pada penelitian ini diamati pengaruh sudut masuk sayap yang lebih kecil dari 900 yaitu sudut 600 dan 300. Hasil penelitian menunjukkan bahwa koefisien debit merupakan fungsi dari sudut masuk dan nilai perbandingan kedalaman air dan jari-jari pelimpah (h/r). Koefisien debit terbesar bernilai antara (0,341 – 0,366) pada sudut masuk antara (55,850- 57,730)
Kajian Hubungan Antara Debit Berubah dengan Tinggi Muka Air dan Kecepatan Aliran
Abstrak. Banjir merupakan bencana alam yang perlu perhatian serius agar dampak yang diakibatkan dapat diminimalkan. Pada kejadian banjir terjadi suatu fenomena dimana debit, tinggi muka air dan kecepatan aliran mencapai nilai maksimum pada waktu yang tidak bersamaan. Penelitian ini ditujukan untuk membuktikan dan memperlihatkan fenomena tersebut dengan membuat suatu pemodelan aliran tak tunak pada flume di Laboratorium Uji Model Fisik Hidraulik, Fakultas Teknik Sipil dan Lingkungan Institut Teknologi Bandung. Selain pemodelan fisik, untuk mendukung penelitian ini dilakukan pula pemodelan numerik satu dimensi dengan syarat batas yang didapat dari hasil pemodelan fisik. Dari hasil pemodelan fisik maupun numerik diperoleh bahwa kecepatan aliran mencapai nilai maksimum terlebih dahulu, kemudian debit mencapai nilai maksimum dan tinggi muka air mencapai nilai maksimum terakhir. Dan hasil pemodelan numerik satu dimensi tidak jauh berbeda nilainya dengan hasil pemodelan fisik. Pemodelan numerik satu dimensi tidak hanya dilakukan untuk penampang berbentuk persegi panjang saja, pemodelan juga dilakukan untuk saluran dengan penampang berbentuk trapesium dengan kemiringan z = 1 dan z = 2. Hal ini dilakukan untuk melihat efek dari perbedaan bentuk penampang saluran. Dengan syarat batas, kekasaran saluran dan lebar dasar saluran yang sama didapatkan debit pada saluran berpenampang trapesium dengan z = 2 lebih besar dibandingkan dengan saluran berpenampang trapesium dengan z =1 dan saluran berpenampang persegi panjang. Hal ini disebabkan karena pada saluran berpenampang trapesium dengan z = 2 memiliki luas penampang basah yang lebih besar dibandingkan saluran berpenampang trapesium dengan z = 1 dan saluran berpenampang persegi panjang,mengingat debit adalah fungsi dari kecepatan aliran dan luas penampang basah. Abstract. Flood is a natural disaster needs a serious attention to minimize its negative impact. When flood occurs, a phenomenon happens where discharge, water level and stream velocity reach the maximum value at the different time. This research is conducted to prove and show the phenomenon by constructing an unsteady flow model in a The Hydraulic Laboratory, Civil and Environment Engineering Department. To support this research, besides physical model, one dimension numerical model is also being used as a boundary condition from the result of physical model. The result of physical and numerical model is that the stream velocity reaches the maximum point earlier, then the discharge reaches the maximum point and the water level reaches the last maximum point.The result of one dimension numerical model has similar value with the physical model. The one dimension numerical model is not only done for the rectangular shape, but also for the trapezium shape channel with inclination z = 1 and z = 2. It is done to see the effect of the different between channel shapes. With identical boundary condition of the roughness coefficient and width of the bottom channel, the discharge of the trapezium shape channel with inclination z = 2 is larger than the discharge of the trapezium shape channel with inclination z = 1 and the discharge of the rectangular shape channel. It is caused by the trapezium shape channel with inclination z = 2 that has larger wetted area compared to the trapezium shape channel with inclination z = 1 and the rectangular shape channel considering discharge is the function of stream velocity and wetted area
Kajian Koefisien Limpasan Hujan Cekungan Kecil Berdasarkan Model Infiltasi Empirik untuk DAS Bagian Hulu (Kasus pada Cekungan Kecil Cikumutuk DAS Cimanuk Hulu)
Abstrak. Infiltrasi kumulatif dihitung oleh F(f) = f(t).t. Laju infiltrasi (f(t)) merupakan fungsi kelembaban tanah awal (2); kandungan pori drainase cepat dan drainase lambat (0c dan 0l); serta durasi dan probabilitas hujan (t dan p). Nilai F(t) (mm) semakin besar dengan bertambahnya waktu hujan dan semakin kecilnya probabilitas hujan. Nilai ini berkisar antara 1,59 "“ 20,50 untuk lahan palawija; 1,88 "“ 21,23 untuk lahan agroforestri; 1,36 "“ 17,84 untuk lahan tidak digarap; 1,11 "“ 23,88 untuk lahan kayu campuran; dan 1,28 "“ 22,59 untuk lahan permukiman. Koefisien limpasan riil cekungan (C); merupakan perbandingan antara limpasan hujan empirik (ROempirik) dengan limpasan hujan model (ROC). Koefisien C model cekungan kecil (CM) diformulasi sebagai fungsi dari t dan p. dengan H = (9,16 + 6,61.t). Pada hujan rendah (< 4 mm), nilai CM adalah kecil (< 0.30). Pada hujan lebih besar (> 6 - 24 mm), nilai CMlebih tinggi (≥ 0.30 "“ 0.60). Pada hujan > 24 mm, nilai CM cenderung menuju konstan. Nilai (1"“CM) menunjukkan proporsi air dari ROC yang tersimpan pada cekungan kecil dalam bentuk intersepsi oleh tumbuhan; tertahan oleh ledok, tampungan kecil, atau reservoir-reservoir buatan, baik di permukaan maupun di dalam tanah. Simpanan ini, sekitar 40 % dari ROC.Abstract. Cumulative infiltrate calculated by F(t)= f(t).t. Rate of infiltrate (f(t)) is function of initial soil moisture (2), content of rapid and slow drainage pores ( ηc and ηl); and duration and probability of rain (t and p). Value of F (t) (mm) ever greater by increasing rain duration and smaller rain probability. This value range from 1,59 - 20,50 for the second crops; 1,88 - 21,23 for the agro forestry; 1,36 - 17,84 for the non arable land; 1,11 - 23,88 for the forest; and 1,28 - 22,59 for the settlement. The real runoff coefficient of small basin (C) is comparison between empirical run off (ROempirik) with the model run off (ROC). The Coefficient C model (CM) had formulated as with H = (9,16 + 6,61.t). At low rainfall (< 4 mm), the CM is small (< 0.30); at bigger rainfall (> 6 - 24 mm) the value of CM is higher (0.30 - 0.60); and at rainfall > 24 mm CM is tend to go constantly. The value of (1-CM) indicate proportion of ROC which storage in the forms interception by plant, micro basin on the land surface, or artificial reservoirs. That is around 40 % of ROC