97 research outputs found

    Estimates of in situ Larval Development Time for the Lobster, Homarus Americanus

    Get PDF
    Larval development time is a critical factor in assessing the potential for larval transport, mortality. and subsequently, the connectivity of marine populations through larval exchange. Most estimates of larval duration are based on laboratory studies and may not reflect development times in nature. For larvae of the American lobster (Homarus americanus), temperature-dependent development times have been established in previous laboratory studies. Here, we used the timing of seasonal abundance curves for newly hatched larvae (stage 1) and the final plankonic instar (postlarva), coupled with a model of temperature-dependent development to assess development time in the field. We were unable to reproduce the timing of the seasonal abundance curves using laboratory development rates in our model. Our results suggest that larval development in situ may be twice as fast as reported laboratory rates. This will result in reduced estimates of larval transport potential, and increased estimates of instantaneous mortality rate and production

    Changes in copepod distributions associated with increased turbulence from wind stress

    Get PDF
    Vertical profiles of turbulent kinetic energy dissipation rate (ε), current velocity, temperature, salinity, chlorophyll fluorescence, and copepods were sampled for 4 d at an anchor station on the southern flank of Georges Bank when the water column was stratified in early June 1995. Copepodite stages of Temora spp., Oithona spp., Pseudocalanus spp., and Calanus finmarchicus, and all of their naupliar stages except for Temora spp., were found deeper in the water column when turbulent dissipation rates in the surface mixed layer increased in response to increasing wind stress. Taxa that initially occurred at the bottom of the surface mixed layer at 10 to 15 m depth ( ε ¾ 10-8 W kg-1) before the wind event were located in the pycnocline at 20 to 25 m depth when dissipation rates at 10 m increased up to 10-6 W kg-1. Dissipation rates in the pycnocline were similar to those experienced at shallower depths before the wind event. After passage of the wind event and with relaxation of dissipation rates in the surface layer, all stages returned to prior depths above the pycnocline. Temora spp. nauplii did not change depth during this period. Our results indicate that turbulence from a moderate wind event can influence the vertical distribution of copepods in the surface mixed layer. Changes in the vertical distribution of copepods can impact trophic interactions, and movements related to turbulence would affect the application of turbulence theory to encounter and feeding rates

    Electrostatically Confined Monolayer Graphene Quantum Dots with Orbital and Valley Splittings

    Get PDF
    The electrostatic confinement of massless charge carriers is hampered by Klein tunneling. Circumventing this problem in graphene mainly relies on carving out nanostructures or applying electric displacement fields to open a band gap in bilayer graphene. So far, these approaches suffer from edge disorder or insufficiently controlled localization of electrons. Here we realize an alternative strategy in monolayer graphene, by combining a homogeneous magnetic field and electrostatic confinement. Using the tip of a scanning tunneling microscope, we induce a confining potential in the Landau gaps of bulk graphene without the need for physical edges. Gating the localized states toward the Fermi energy leads to regular charging sequences with more than 40 Coulomb peaks exhibiting typical addition energies of 7-20 meV. Orbital splittings of 4-10 meV and a valley splitting of about 3 meV for the first orbital state can be deduced. These experimental observations are quantitatively reproduced by tight binding calculations, which include the interactions of the graphene with the aligned hexagonal boron nitride substrate. The demonstrated confinement approach appears suitable to create quantum dots with well-defined wave function properties beyond the reach of traditional techniques

    Early Life History and a Modeling Framework for Lobster (Homarus Americanus) Populations in the Gulf of Maine

    Get PDF
    Beginning in the late 1980s, lobster (Homarus americanus) landings for the state of Maine and the Bay of Fundy increased to levels more than three times their previous 20-year means. Reduced predation may have permitted the expansion of lobsters into previously inhospitable territory, but we argue that in this region the spatial patterns of recruitment and the abundance of lobsters are substantially driven by events governing the earliest life history stages, including the abundance and distribution of planktonic stages and their initial settlement as Young-of-Year (YOY) lobsters. Settlement densities appear to be strongly driven by abundance of the pelagic postlarvae. Postlarvae and YOY show large-scale spatial patterns commensurate with coastal circulation, but also multi-year trends in abundance and abrupt shifts in abundance and spatial patterns that signal strong environmental forcing. The extent of the coastal shelf that defines the initial settlement grounds for lobsters is important to future population modeling. We address one part of this definition by examining patterns of settlement with depth, and discuss a modeling framework for the full life history of lobsters in the Gulf of Maine

    Anomalous Lattice Vibrations of Single and Few-Layer MoS2

    Full text link
    Molybdenum disulfide (MoS2) of single and few-layer thickness was exfoliated on SiO2/Si substrate and characterized by Raman spectroscopy. The number of S-Mo-S layers of the samples was independently determined by contact-mode atomic-force microscopy. Two Raman modes, E12g and A1g, exhibited sensitive thickness dependence, with the frequency of the former decreasing and that of the latter increasing with thickness. The results provide a convenient and reliable means for determining layer thickness with atomic-level precision. The opposite direction of the frequency shifts, which cannot be explained solely by van der Waals interlayer coupling, is attributed to Coulombic interactions and possible stacking-induced changes of the intralayer bonding. This work exemplifies the evolution of structural parameters in layered materials in changing from the 3-dimensional to the 2-dimensional regime.Comment: 14 pages, 4 figure

    Effects of temperature and ammonia flow rate on the chemical vapour deposition growth of nitrogen-doped graphene

    Get PDF
    We doped graphene in situ during synthesis from methane and ammonia on copper in a low-pressure chemical vapour deposition system, and investigated the effect of the synthesis temperature and ammonia concentration on the growth. Raman and X-ray photoelectron spectroscopy was used to investigate the quality and nitrogen content of the graphene and demonstrated that decreasing the synthesis temperature and increasing the ammonia flow rate results in an increase in the concentration of nitrogen dopants up to ca. 2.1% overall. However, concurrent scanning electron microscopy studies demonstrate that decreasing both the growth temperature from 1000 to 900 1C and increasing the N/C precursor ratio from 1/50 to 1/10 significantly decreased the growth rate by a factor of six overall. Using scanning tunnelling microscopy we show that the nitrogen was incorporated mainly in substitutional configuration, while current imaging tunnelling spectroscopy showed that the effect of the nitrogen on the density of states was visible only over a few atom distances

    Mapping of functionalized regions on carbon nanotubes by scanning tunneling microscopy

    Full text link
    Scanning tunneling microscopy (STM) gives us the opportunity to map the surface of functionalized carbon nanotubes in an energy resolved manner and with atomic precision. But this potential is largely untapped, mainly due to sample stability issues which inhibit reliable measurements. Here we present a simple and straightforward solution that makes away with this difficulty, by incorporating the functionalized multiwalled carbon nanotubes (MWCNT) into a few layer graphene - nanotube composite. This enabled us to measure energy resolved tunneling conductance maps on the nanotubes, which shed light on the level of doping, charge transfer between tube and functional groups and the dependence of defect creation or functionalization on crystallographic orientation.Comment: Keywords: functionalization, carbon nanotubes, few layer graphene, STM, CITS, ST

    Mechanical properties of freely suspended atomically thin dielectric layers of mica

    Full text link
    We have studied the elastic deformation of freely suspended atomically thin sheets of muscovite mica, a widely used electrical insulator in its bulk form. Using an atomic force microscope, we carried out bending test experiments to determine the Young's modulus and the initial pre-tension of mica nanosheets with thicknesses ranging from 14 layers down to just one bilayer. We found that their Young's modulus is high (190 GPa), in agreement with the bulk value, which indicates that the exfoliation procedure employed to fabricate these nanolayers does not introduce a noticeable amount of defects. Additionally, ultrathin mica shows low pre-strain and can withstand reversible deformations up to tens of nanometers without breaking. The low pre-tension and high Young's modulus and breaking force found in these ultrathin mica layers demonstrates their prospective use as a complement for graphene in applications requiring flexible insulating materials or as reinforcement in nanocomposites.Comment: 9 pages, 5 figures, selected as cover of Nano Research, Volume 5, Number 8 (2012

    A giant adrenal pseudocyst presenting with right hypochondralgia and fever: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Adrenal pseudocysts are rare cystic masses that arise from the adrenal gland and which are usually non-functional and asymptomatic. Adrenal pseudocysts consist of a fibrous wall without an epithelial or endothelial lining. We report the case of a patient with a giant adrenal pseudocyst presenting with right hypochondralgia and high fever.</p> <p>Case presentation</p> <p>A 52-year-old Japanese man was admitted with right hypochondralgia and a chill. Abdominal computed tomography revealed a well-defined cystic mass measuring 19 cm which was located in the right adrenal region and the contents of which were not enhanced with contrast medium. Abdominal ultrasonography revealed a heterogeneously hypo-echoic lesion with a peripheral high-echoic rim. Serum hormonal levels were almost normal. Despite treatment with antibiotics, the high fever persisted. Based on these findings, we made a preoperative diagnosis of a right adrenal cyst with infection. However, the possibility of malignancy still remained. The patient underwent laparotomy and right adrenal cyst excision with partial hepatectomy in order to relieve the symptoms and to confirm an accurate diagnosis. Histological examination revealed an adrenal pseudocyst with infection. His condition improved soon after the operation.</p> <p>Conclusion</p> <p>We report a case of a giant adrenal pseudocyst with infection. Surgery is required for symptomatic cases in order to relieve the symptoms and in cases of uncertain diagnosis.</p
    corecore