4,636 research outputs found

    Exact Solutions of a (2+1)-Dimensional Nonlinear Klein-Gordon Equation

    Full text link
    The purpose of this paper is to present a class of particular solutions of a C(2,1) conformally invariant nonlinear Klein-Gordon equation by symmetry reduction. Using the subgroups of similitude group reduced ordinary differential equations of second order and their solutions by a singularity analysis are classified. In particular, it has been shown that whenever they have the Painlev\'e property, they can be transformed to standard forms by Moebius transformations of dependent variable and arbitrary smooth transformations of independent variable whose solutions, depending on the values of parameters, are expressible in terms of either elementary functions or Jacobi elliptic functions.Comment: 16 pages, no figures, revised versio

    Transformations of Heun's equation and its integral relations

    Full text link
    We find transformations of variables which preserve the form of the equation for the kernels of integral relations among solutions of the Heun equation. These transformations lead to new kernels for the Heun equation, given by single hypergeometric functions (Lambe-Ward-type kernels) and by products of two hypergeometric functions (Erd\'elyi-type). Such kernels, by a limiting process, also afford new kernels for the confluent Heun equation.Comment: This version was published in J. Phys. A: Math. Theor. 44 (2011) 07520

    The vulnerable microcirculation in the critically ill pediatric patient

    Get PDF
    In neonates, cardiovascular system development does not stop after the transition from intra-uterine to extra-uterine life and is not limited to the macrocirculation. The microcirculation (MC), which is essential for oxygen, nutrient, and drug delivery to tissues and cells, also develops. Developmental changes in the microcirculatory structure continue to occur during the initial weeks of life in healthy neonates. The physiologic hallmarks of neonates and developing children make them particularly vulnerable during critical illness; however, the cardiovascular monitoring possibilities are limited compared with critically ill adult patients. Therefore, the development of non-invasive methods for monitoring the MC is necessary in pediatric critical care for early identification of impending deterioration and to enable the initiation and titration of therapy to ensure cell survival. To date, the MC may be non-invasively monitored at the bedside using hand-held videomicroscopy, which provides useful information regarding the microcirculation. There is an increasing number of studies on the MC in neonates and pediatric patients; however, additional steps are necessary to transition MC monitoring from bench to bedside. The recently introduced concept of hemodynamic coherence describes the relationship between changes in the MC and macrocirculation. The loss of hemodynamic coherence may result in a depressed MC despite an improvement in the macrocirculation, which represents a condition associated with adverse outcomes. In the pediatric intensive care unit, the concept of hemodynamic coherence may function as a framework to develop microcirculatory measurements towards implementation in daily clinical practice

    On the Causality and Stability of the Relativistic Diffusion Equation

    Full text link
    This paper examines the mathematical properties of the relativistic diffusion equation. The peculiar solution which Hiscock and Lindblom identified as an instability is shown to emerge from an ill-posed initial value problem. These do not meet the mathematical conditions required for realistic physical problems and can not serve as an argument against the relativistic hydrodynamics of Landau and Lifshitz.Comment: 6 page

    Critical behavior in Angelesco ensembles

    Full text link
    We consider Angelesco ensembles with respect to two modified Jacobi weights on touching intervals [a,0] and [0,1], for a < 0. As a \to -1 the particles around 0 experience a phase transition. This transition is studied in a double scaling limit, where we let the number of particles of the ensemble tend to infinity while the parameter a tends to -1 at a rate of order n^{-1/2}. The correlation kernel converges, in this regime, to a new kind of universal kernel, the Angelesco kernel K^{Ang}. The result follows from the Deift/Zhou steepest descent analysis, applied to the Riemann-Hilbert problem for multiple orthogonal polynomials.Comment: 32 pages, 9 figure

    Occurrence of periodic Lam\'e functions at bifurcations in chaotic Hamiltonian systems

    Get PDF
    We investigate cascades of isochronous pitchfork bifurcations of straight-line librating orbits in some two-dimensional Hamiltonian systems with mixed phase space. We show that the new bifurcated orbits, which are responsible for the onset of chaos, are given analytically by the periodic solutions of the Lam\'e equation as classified in 1940 by Ince. In Hamiltonians with C_2v{2v} symmetry, they occur alternatingly as Lam\'e functions of period 2K and 4K, respectively, where 4K is the period of the Jacobi elliptic function appearing in the Lam\'e equation. We also show that the two pairs of orbits created at period-doubling bifurcations of touch-and-go type are given by two different linear combinations of algebraic Lam\'e functions with period 8K.Comment: LaTeX2e, 22 pages, 14 figures. Version 3: final form of paper, accepted by J. Phys. A. Changes in Table 2; new reference [25]; name of bifurcations "touch-and-go" replaced by "island-chain

    Applications of Information Theory to Analysis of Neural Data

    Full text link
    Information theory is a practical and theoretical framework developed for the study of communication over noisy channels. Its probabilistic basis and capacity to relate statistical structure to function make it ideally suited for studying information flow in the nervous system. It has a number of useful properties: it is a general measure sensitive to any relationship, not only linear effects; it has meaningful units which in many cases allow direct comparison between different experiments; and it can be used to study how much information can be gained by observing neural responses in single trials, rather than in averages over multiple trials. A variety of information theoretic quantities are commonly used in neuroscience - (see entry "Definitions of Information-Theoretic Quantities"). In this entry we review some applications of information theory in neuroscience to study encoding of information in both single neurons and neuronal populations.Comment: 8 pages, 2 figure

    Black Hole Thermodynamics from Near-Horizon Conformal Quantum Mechanics

    Full text link
    The thermodynamics of black holes is shown to be directly induced by their near-horizon conformal invariance. This behavior is exhibited using a scalar field as a probe of the black hole gravitational background, for a general class of metrics in D spacetime dimensions (with D≥4D \geq 4). The ensuing analysis is based on conformal quantum mechanics, within a hierarchical near-horizon expansion. In particular, the leading conformal behavior provides the correct quantum statistical properties for the Bekenstein-Hawking entropy, with the near-horizon physics governing the thermodynamic properties from the outset. Most importantly: (i) this treatment reveals the emergence of holographic properties; (ii) the conformal coupling parameter is shown to be related to the Hawking temperature; and (iii) Schwarzschild-like coordinates, despite their ``coordinate singularity,''can be used self-consistently to describe the thermodynamics of black holes.Comment: 16 pages. Sections 2 and 3 and sections 4 and 5 of version 1 were merged and reduced; a few typos were corrected. The original central results and equations remain unchange

    Quasi-doubly periodic solutions to a generalized Lame equation

    Full text link
    We consider the algebraic form of a generalized Lame equation with five free parameters. By introducing a generalization of Jacobi's elliptic functions we transform this equation to a 1-dim time-independent Schroedinger equation with (quasi-doubly) periodic potential. We show that only for a finite set of integral values for the five parameters quasi-doubly periodic eigenfunctions expressible in terms of generalized Jacobi functions exist. For this purpose we also establish a relation to the generalized Ince equation.Comment: 15 pages,1 table, accepted for publication in Journal of Physics

    Adiabatic-antiadiabatic crossover in a spin-Peierls chain

    Full text link
    We consider an XXZ spin-1/2 chain coupled to optical phonons with non-zero frequency ω0\omega_0. In the adiabatic limit (small ω0\omega_0), the chain is expected to spontaneously dimerize and open a spin gap, while the phonons become static. In the antiadiabatic limit (large ω0\omega_0), phonons are expected to give rise to frustration, so that dimerization and formation of spin-gap are obtained only when the spin-phonon interaction is large enough. We study this crossover using bosonization technique. The effective action is solved both by the Self Consistent Harmonic Approximation (SCHA)and by Renormalization Group (RG) approach starting from a bosonized description. The SCHA allows to analyze the lowfrequency regime and determine the coupling constant associated with the spin-Peierls transition. However, it fails to describe the SU(2) invariant limit. This limit is tackled by the RG. Three regimes are found. For ω0≪Δs\omega_0\ll\Delta_s, where Δs\Delta_s is the gap in the static limit ω0→0\omega_0\to 0, the system is in the adiabatic regime, and the gap remains of order Δs\Delta_s. For ω0>Δs\omega_0>\Delta_s, the system enters the antiadiabatic regime, and the gap decreases rapidly as ω0\omega_0 increases. Finally, for ω0>ωBKT\omega_0>\omega_{BKT}, where ωBKT\omega_{BKT} is an increasing function of the spin phonon coupling, the spin gap vanishes via a Berezinskii-Kosterlitz-Thouless transition. Our results are discussed in relation with numerical and experimental studies of spin-Peierls systems.Comment: Revtex, 21 pages, 5 EPS figures (v1); 23 pages, 6 EPS figures, more detailed comparison with ED results, referenes added (v2
    • …
    corecore